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Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy
information retrieval systems. Given the increasing use of complex machine learning models in search systems,
explainability is essential in building and auditing responsible information retrieval models. This survey �lls a
vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and
discusses recent explainability methods developed for di�erent application domains in information retrieval,
providing a common framework and unifying perspectives. In addition, it re�ects on the common concern of
evaluating explanations and highlights open challenges and opportunities.

1 INTRODUCTION
Information retrieval (IR) systems are one of the most user-centric systems on the Web, in digital
libraries, and enterprises. Search engines can be general-purpose (e.g., Web search) to specialized
expert systems that are geared towards expert consumption or support, including legal and patent
retrieval IR [22], historical search [55, 56], and scholarly search [49, 116]. On the one hand, riding
on the recent advances of complex machine learning (ML) models trained on large amounts of
data, IR has seen impressive performance gains over classical models [73]. On the other hand,
complex models also tend to be opaque and less transparent than their classical and arguably
simpler counterparts. Therefore, towards an important goal of ensuring a reliable and trustworthy
IR systems, recent years have seen increased interest in the area of explainable information retrieval
(ExIR).

1.1 Motivation
Firstly, in IR, there has been su�cient evidence of how user interaction data from search engines
can be a source of biases, especially associated with gender and ethnicity [13, 83, 100]. When
undetected and unidenti�ed, the users of an IR system too are exposed to stereotypical biases that
reinforce known yet unfair prejudices. Secondly, model retrieval models based on transformer-style
over-parameterized models can be brittle and sensitive to small adversarial errors [132]. Recently
developed inductive biases, pre-training procedures, and transfer learning practices might lead
these statistical over-parameterized models to learn shortcuts [44]. Consequently, shortcuts that do
not align with human understanding results in learning patterns that are right for the wrong reasons.
Finally, expert users using specialized search systems – in legal search, medicine, journalism,
and patent search – need control, agency, and lineage of the search results. For all the above
IR-centric reasons, among many other general reasons – like utility for legal compliance, scienti�c
investigation, and model debugging – the �eld of ExIR provides the tools/primitives to examine
learning models and the capability to build transparent IR systems.

1.2 The Landscape of Explainable Information Retrieval
Although interpretability in IR is a fairly recent phenomenon, there has been a large amount of
growing yet unorganized work that covers many tasks and aspects of data-driven models in IR.
This survey aims to collect, organize and synthesize the progress in ExIR in the last few years. ExIR
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has quite a diverse landscape owing to the continued and sustained interest in the last few years.
The initial approaches in ExIR were adaptations of widely popular feature-attribution approaches
(e.g., LIME [102] and SHAP’s [76]). However, in the following years, there has been a multitude
of approaches that tackle speci�c problems in IR. We cover a wide range of approaches, from
post-hoc approaches (cf. Sections 3, 4 and 5), grounding to axiomatic approaches (cf. Section 6), to
interpretable-by-design methods (cf. Section 8 and Section 9).

1.3 Methodology and Scope
Before we started our literature review, we needed to collect a corpus of relevant papers for ExIR
and delineate the boundaries of the review.

1.3.1 Corpus Creation. We started with very �rst works in ExIR (e.g., [29, 112, 113]), to build up an
initial pool of papers. We did then forward search from this initial set of papers that mention terms
“(explain* OR interpretab* OR explanation* OR transparen*)” AND “(retriev* OR rank*”. Secondly, we
limited our search to articles published in the past �ve years (2018 – 2022) to provide a representative
window into current best practices that have emerged since the inception of the earliest works in
ExIR in the following IR venues – ACM Special Interest Group on Information Retrieval (SIGIR),
International Conference on the Theory of Information Retrieval (ICTIR), International Conference
on Web Search and Data Mining (WSDM), Conference on Information and Knowledge Management
(CIKM), the ACM Web Conference (TheWebConf). In total, after �ltering, we ended up with 68
papers that we consider in this review that are partially relevant. A subset of 32 papers of those
partially relevant papers �nd more detailed treatment in this survey.

1.3.2 Scope. We note that many of the methods in ExIR have methodological overlap with those
invented in ML, natural language processing (NLP), and recommender systems (RS) communities. In
fact, most of the approaches in ExIR are based on seminal papers in these communities.We only focus
on core-IR issues in this survey and, wherever possible, clearly spell out the distinctions from similar
approaches in NLP, RS and ML in general. Rationale-based models have been heavily investigated
in NLP. We cover only the methods popularized in IR-centric or venues. Our survey focuses on
rationale-based models, i.e., document-ranking tasks, in learning-to-rank (LTR), and tasks that rely
on a retrieval component. Also, RS have a lot of work and even surveys in explainability [145].
We only survey those approaches that are useful for query modeling in query-based systems. The
papers on the topics of personalization search or explainable RS, although they can be considered as
user modeling applications of ExIR, were not selected due to either lack of speci�c interpretability
methods or being more suitable to be classi�ed into a relatively independent �eld of study. We also
exclude IR approaches dealing with image or multi-modal data.
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correct baselines and a tightly controlled setup, it might be able to shed light on the question of
What information is learned by training on a speci�c task? or How easily extractable is information
about a concept from the model? [127]. However, it is unclear whether this information is actually
being used by the model at inference time [9]. To resolve this, recent studies borrow ideas from
causality research to understand whether a speci�c concept is utilized during the inference using
counterfactual representations, where the concept is voided [34, 66]. The model is proven to
have used the concept if the counterfactual representations result in worse task performance. In
conclusion, while there has been an in-depth evaluation of the probing paradigm by the NLP and
interpretability community and many improvements have been proposed, little of that found its
way into IR-related probing studies. Future probing studies in IR will need to include learnings and
best practices from established research and use them to evaluate and validate the �ndings for IR
models.

8 EXPLAINABLE-BY-ARCHITECTURE MODELS
We refer to the �rst family of IBD models as explainable-by-architecture models. Those models can
be viewed as amodular framework ofmultiple components (see Figure 9). The general architecture of
these models involves intermediate feature extraction (that might involve feature attributions), and
a task-speci�c decision structure (that might involve feature interactions). Pragmatically speaking,
not all components are fully interpretable to ensure competitive task performance. Therefore, most
of the IBD resort to making only speci�c components interpretable or transparent. In the following,
we look at two major use cases of such models in text ranking and LTR tasks.
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correct baselines and a tightly controlled setup, it might be able to shed light on the question of
What information is learned by training on a speci�c task? or How easily extractable is information
about a concept from the model? [127]. However, it is unclear whether this information is actually
being used by the model at inference time [9]. To resolve this, recent studies borrow ideas from
causality research to understand whether a speci�c concept is utilized during the inference using
counterfactual representations, where the concept is voided [34, 66]. The model is proven to
have used the concept if the counterfactual representations result in worse task performance. In
conclusion, while there has been an in-depth evaluation of the probing paradigm by the NLP and
interpretability community and many improvements have been proposed, little of that found its
way into IR-related probing studies. Future probing studies in IR will need to include learnings and
best practices from established research and use them to evaluate and validate the �ndings for IR
models.

8 EXPLAINABLE-BY-ARCHITECTURE MODELS
We refer to the �rst family of IBD models as explainable-by-architecture models. Those models can
be viewed as amodular framework ofmultiple components (see Figure 9). The general architecture of
these models involves intermediate feature extraction (that might involve feature attributions), and
a task-speci�c decision structure (that might involve feature interactions). Pragmatically speaking,
not all components are fully interpretable to ensure competitive task performance. Therefore, most
of the IBD resort to making only speci�c components interpretable or transparent. In the following,
we look at two major use cases of such models in text ranking and LTR tasks.
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correct baselines and a tightly controlled setup, it might be able to shed light on the question of
What information is learned by training on a speci�c task? or How easily extractable is information
about a concept from the model? [127]. However, it is unclear whether this information is actually
being used by the model at inference time [9]. To resolve this, recent studies borrow ideas from
causality research to understand whether a speci�c concept is utilized during the inference using
counterfactual representations, where the concept is voided [34, 66]. The model is proven to
have used the concept if the counterfactual representations result in worse task performance. In
conclusion, while there has been an in-depth evaluation of the probing paradigm by the NLP and
interpretability community and many improvements have been proposed, little of that found its
way into IR-related probing studies. Future probing studies in IR will need to include learnings and
best practices from established research and use them to evaluate and validate the �ndings for IR
models.

8 EXPLAINABLE-BY-ARCHITECTURE MODELS
We refer to the �rst family of IBD models as explainable-by-architecture models. Those models can
be viewed as amodular framework ofmultiple components (see Figure 9). The general architecture of
these models involves intermediate feature extraction (that might involve feature attributions), and
a task-speci�c decision structure (that might involve feature interactions). Pragmatically speaking,
not all components are fully interpretable to ensure competitive task performance. Therefore, most
of the IBD resort to making only speci�c components interpretable or transparent. In the following,
we look at two major use cases of such models in text ranking and LTR tasks.
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correct baselines and a tightly controlled setup, it might be able to shed light on the question of
What information is learned by training on a speci�c task? or How easily extractable is information
about a concept from the model? [127]. However, it is unclear whether this information is actually
being used by the model at inference time [9]. To resolve this, recent studies borrow ideas from
causality research to understand whether a speci�c concept is utilized during the inference using
counterfactual representations, where the concept is voided [34, 66]. The model is proven to
have used the concept if the counterfactual representations result in worse task performance. In
conclusion, while there has been an in-depth evaluation of the probing paradigm by the NLP and
interpretability community and many improvements have been proposed, little of that found its
way into IR-related probing studies. Future probing studies in IR will need to include learnings and
best practices from established research and use them to evaluate and validate the �ndings for IR
models.

8 EXPLAINABLE-BY-ARCHITECTURE MODELS
We refer to the �rst family of IBD models as explainable-by-architecture models. Those models can
be viewed as amodular framework ofmultiple components (see Figure 9). The general architecture of
these models involves intermediate feature extraction (that might involve feature attributions), and
a task-speci�c decision structure (that might involve feature interactions). Pragmatically speaking,
not all components are fully interpretable to ensure competitive task performance. Therefore, most
of the IBD resort to making only speci�c components interpretable or transparent. In the following,
we look at two major use cases of such models in text ranking and LTR tasks.
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correct baselines and a tightly controlled setup, it might be able to shed light on the question of
What information is learned by training on a speci�c task? or How easily extractable is information
about a concept from the model? [127]. However, it is unclear whether this information is actually
being used by the model at inference time [9]. To resolve this, recent studies borrow ideas from
causality research to understand whether a speci�c concept is utilized during the inference using
counterfactual representations, where the concept is voided [34, 66]. The model is proven to
have used the concept if the counterfactual representations result in worse task performance. In
conclusion, while there has been an in-depth evaluation of the probing paradigm by the NLP and
interpretability community and many improvements have been proposed, little of that found its
way into IR-related probing studies. Future probing studies in IR will need to include learnings and
best practices from established research and use them to evaluate and validate the �ndings for IR
models.

8 EXPLAINABLE-BY-ARCHITECTURE MODELS
We refer to the �rst family of IBD models as explainable-by-architecture models. Those models can
be viewed as amodular framework ofmultiple components (see Figure 9). The general architecture of
these models involves intermediate feature extraction (that might involve feature attributions), and
a task-speci�c decision structure (that might involve feature interactions). Pragmatically speaking,
not all components are fully interpretable to ensure competitive task performance. Therefore, most
of the IBD resort to making only speci�c components interpretable or transparent. In the following,
we look at two major use cases of such models in text ranking and LTR tasks.

Pre-print

What component is interpretable ?

Feature extraction Feature Interaction and 
aggregation 

Intermediate input  
representations 

Non-interpretable interpretable interpretable



8

Standard Learning Setup

The movie experience was awful

Predict Parameterised 
Model (BERT)

ML 
Model

Data

Generalization 
Error

Standard ML

Predictions



9

Explain then Predict 

The movie experience was awful

The movie experience was awful

Explain

Predict 

Parameterised 
Model (BERT)

Parameterised 
Model (BERT)

Ensure prediction is solely on the explanations

Rationalizing Neural Predictions

Tao Lei, Regina Barzilay and Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{taolei, regina, tommi}@csail.mit.edu

Abstract

Prediction without justification has limited ap-
plicability. As a remedy, we learn to extract
pieces of input text as justifications – ratio-
nales – that are tailored to be short and co-
herent, yet sufficient for making the same pre-
diction. Our approach combines two modu-
lar components, generator and encoder, which
are trained to operate well together. The gen-
erator specifies a distribution over text frag-
ments as candidate rationales and these are
passed through the encoder for prediction. Ra-
tionales are never given during training. In-
stead, the model is regularized by desiderata
for rationales. We evaluate the approach on
multi-aspect sentiment analysis against manu-
ally annotated test cases. Our approach out-
performs attention-based baseline by a signif-
icant margin. We also successfully illustrate
the method on the question retrieval task.1

1 Introduction

Many recent advances in NLP problems have come
from formulating and training expressive and elabo-
rate neural models. This includes models for senti-
ment classification, parsing, and machine translation
among many others. The gains in accuracy have,
however, come at the cost of interpretability since
complex neural models offer little transparency con-
cerning their inner workings. In many applications,
such as medicine, predictions are used to drive criti-
cal decisions, including treatment options. It is nec-
essary in such cases to be able to verify and under-

1Our code and data are available at https://github.
com/taolei87/rcnn.

the	beer	was	n’t	what	i	expected,	and	i‘m	not	sure	it’s	“true	
to	 style“,	 but	 i	 thought	 it	 was	 delicious.	 a	 very	 pleasant	
ruby	red-amber	color	with	a	rela9vely	brilliant	finish,	but	a	
limited	amount	of	carbona9on,	from	the	look	of	it.	aroma	is	
what	 i	 think	 an	 amber	 ale	 should	 be	 -	 a	 nice	 blend	 of	
caramel	and	happiness	bound	together.

Review

Ratings
Look: 5 stars Smell: 4 stars

Figure 1: An example of a review with ranking in two cate-
gories. The rationale for Look prediction is shown in bold.

stand the underlying basis for the decisions. Ide-
ally, complex neural models would not only yield
improved performance but would also offer inter-
pretable justifications – rationales – for their predic-
tions.

In this paper, we propose a novel approach to in-
corporating rationale generation as an integral part
of the overall learning problem. We limit ourselves
to extractive (as opposed to abstractive) rationales.
From this perspective, our rationales are simply sub-
sets of the words from the input text that satisfy two
key properties. First, the selected words represent
short and coherent pieces of text (e.g., phrases) and,
second, the selected words must alone suffice for
prediction as a substitute of the original text. More
concretely, consider the task of multi-aspect senti-
ment analysis. Figure 1 illustrates a product review
along with user rating in terms of two categories or
aspects. If the model in this case predicts five star
rating for color, it should also identify the phrase ”a

very pleasant ruby red-amber color” as the rationale
underlying this decision.

In most practical applications, rationale genera-
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Optimizing explain then predict

probability distribution over binary selections, i.e.,
z ⇠ gen(x) ⌘ p(z|x) where the length of z varies
with the input x.

In a simple generator, the probability that the tth

word is selected can be assumed to be conditionally
independent from other selections given the input x.
That is, the joint probability p(z|x) factors accord-
ing to

p(z|x) =
lY

t=1

p(zt|x) (independent selection)

The component distributions p(zt|x) can be mod-
eled using a shared bi-directional recurrent neural
network. Specifically, let

�!
f () and

 �
f () be the for-

ward and backward recurrent unit, respectively, then
�!
ht =

�!
f (xt,

��!
ht�1)

 �
ht =

 �
f (xt,

 ��
ht+1)

p(zt|x) = �z(W
z[
�!
ht;
 �
ht] + bz)

Independent but context dependent selection of
words is often sufficient. However, the model is un-
able to select phrases or refrain from selecting the
same word again if already chosen. To this end, we
also introduce a dependent selection of words,

p(z|x) =
lY

t=1

p(zt|x, z1 · · · zt�1)

which can be also expressed as a recurrent neural
network. To this end, we introduce another hidden
state st whose role is to couple the selections. For
example,

p(zt|x, z1,t�1) = �z(W
z[
�!
ht;
 �
ht; st�1] + bz)

st = fz([
�!
ht;
 �
ht; zt], st�1)

Joint objective: A rationale in our definition cor-
responds to the selected words, i.e., {xk|zk = 1}.
We will use (z,x) as the shorthand for this rationale
and, thus, enc(z,x) refers to the target vector ob-
tained by applying the encoder to the rationale as the
input. Our goal here is to formalize how the ratio-
nale can be made short and meaningful yet function
well in conjunction with the encoder. Our generator
and encoder are learned jointly to interact well but
they are treated as independent units for modularity.

The generator is guided in two ways during learn-
ing. First, the rationale that it produces must suffice
as a replacement for the input text. In other words,
the target vector (sentiment) arising from the ratio-
nale should be close to the gold sentiment. The cor-
responding loss function is given by

L(z,x,y) = kenc(z,x)� yk22

Note that the loss function depends directly (para-
metrically) on the encoder but only indirectly on the
generator via the sampled selection.

Second, we must guide the generator to realize
short and coherent rationales. It should select only a
few words and those selections should form phrases
(consecutive words) rather than represent isolated,
disconnected words. We therefore introduce an ad-
ditional regularizer over the selections

⌦(z) = �1kzk+ �2

X

t

|zt � zt�1|

where the first term penalizes the number of selec-
tions while the second one discourages transitions
(encourages continuity of selections). Note that this
regularizer also depends on the generator only indi-
rectly via the selected rationale. This is because it
is easier to assess the rationale once produced rather
than directly guide how it is obtained.

Our final cost function is the combination of the
two, cost(z,x,y) = L(z,x,y) + ⌦(z). Since the
selections are not provided during training, we min-
imize the expected cost:

min
✓e,✓g

X

(x,y)2D

Ez⇠gen(x) [cost(z,x,y)]

where ✓e and ✓g denote the set of parameters of the
encoder and generator, respectively, and D is the
collection of training instances. Our joint objective
encourages the generator to compress the input text
into coherent summaries that work well with the as-
sociated encoder it is trained with.

Minimizing the expected cost is challenging since
it involves summing over all the possible choices
of rationales z. This summation could potentially
be made feasible with additional restrictive assump-
tions about the generator and encoder. However, we
assume only that it is possible to efficiently sample
from the generator.
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and, thus, enc(z,x) refers to the target vector ob-
tained by applying the encoder to the rationale as the
input. Our goal here is to formalize how the ratio-
nale can be made short and meaningful yet function
well in conjunction with the encoder. Our generator
and encoder are learned jointly to interact well but
they are treated as independent units for modularity.

The generator is guided in two ways during learn-
ing. First, the rationale that it produces must suffice
as a replacement for the input text. In other words,
the target vector (sentiment) arising from the ratio-
nale should be close to the gold sentiment. The cor-
responding loss function is given by

L(z,x,y) = kenc(z,x)� yk22

Note that the loss function depends directly (para-
metrically) on the encoder but only indirectly on the
generator via the sampled selection.

Second, we must guide the generator to realize
short and coherent rationales. It should select only a
few words and those selections should form phrases
(consecutive words) rather than represent isolated,
disconnected words. We therefore introduce an ad-
ditional regularizer over the selections

⌦(z) = �1kzk+ �2

X

t

|zt � zt�1|

where the first term penalizes the number of selec-
tions while the second one discourages transitions
(encourages continuity of selections). Note that this
regularizer also depends on the generator only indi-
rectly via the selected rationale. This is because it
is easier to assess the rationale once produced rather
than directly guide how it is obtained.

Our final cost function is the combination of the
two, cost(z,x,y) = L(z,x,y) + ⌦(z). Since the
selections are not provided during training, we min-
imize the expected cost:

min
✓e,✓g

X

(x,y)2D

Ez⇠gen(x) [cost(z,x,y)]

where ✓e and ✓g denote the set of parameters of the
encoder and generator, respectively, and D is the
collection of training instances. Our joint objective
encourages the generator to compress the input text
into coherent summaries that work well with the as-
sociated encoder it is trained with.

Minimizing the expected cost is challenging since
it involves summing over all the possible choices
of rationales z. This summation could potentially
be made feasible with additional restrictive assump-
tions about the generator and encoder. However, we
assume only that it is possible to efficiently sample
from the generator.

Task loss Explanation loss

probability distribution over binary selections, i.e.,
z ⇠ gen(x) ⌘ p(z|x) where the length of z varies
with the input x.

In a simple generator, the probability that the tth

word is selected can be assumed to be conditionally
independent from other selections given the input x.
That is, the joint probability p(z|x) factors accord-
ing to

p(z|x) =
lY

t=1

p(zt|x) (independent selection)

The component distributions p(zt|x) can be mod-
eled using a shared bi-directional recurrent neural
network. Specifically, let
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Independent but context dependent selection of
words is often sufficient. However, the model is un-
able to select phrases or refrain from selecting the
same word again if already chosen. To this end, we
also introduce a dependent selection of words,

p(z|x) =
lY

t=1

p(zt|x, z1 · · · zt�1)

which can be also expressed as a recurrent neural
network. To this end, we introduce another hidden
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example,
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We will use (z,x) as the shorthand for this rationale
and, thus, enc(z,x) refers to the target vector ob-
tained by applying the encoder to the rationale as the
input. Our goal here is to formalize how the ratio-
nale can be made short and meaningful yet function
well in conjunction with the encoder. Our generator
and encoder are learned jointly to interact well but
they are treated as independent units for modularity.

The generator is guided in two ways during learn-
ing. First, the rationale that it produces must suffice
as a replacement for the input text. In other words,
the target vector (sentiment) arising from the ratio-
nale should be close to the gold sentiment. The cor-
responding loss function is given by

L(z,x,y) = kenc(z,x)� yk22

Note that the loss function depends directly (para-
metrically) on the encoder but only indirectly on the
generator via the sampled selection.

Second, we must guide the generator to realize
short and coherent rationales. It should select only a
few words and those selections should form phrases
(consecutive words) rather than represent isolated,
disconnected words. We therefore introduce an ad-
ditional regularizer over the selections
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tions while the second one discourages transitions
(encourages continuity of selections). Note that this
regularizer also depends on the generator only indi-
rectly via the selected rationale. This is because it
is easier to assess the rationale once produced rather
than directly guide how it is obtained.

Our final cost function is the combination of the
two, cost(z,x,y) = L(z,x,y) + ⌦(z). Since the
selections are not provided during training, we min-
imize the expected cost:
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where ✓e and ✓g denote the set of parameters of the
encoder and generator, respectively, and D is the
collection of training instances. Our joint objective
encourages the generator to compress the input text
into coherent summaries that work well with the as-
sociated encoder it is trained with.

Minimizing the expected cost is challenging since
it involves summing over all the possible choices
of rationales z. This summation could potentially
be made feasible with additional restrictive assump-
tions about the generator and encoder. However, we
assume only that it is possible to efficiently sample
from the generator.

Sparsity Continuity

Lei et. al  [ACL 2018] 
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able to select phrases or refrain from selecting the
same word again if already chosen. To this end, we
also introduce a dependent selection of words,

p(z|x) =
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which can be also expressed as a recurrent neural
network. To this end, we introduce another hidden
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Joint objective: A rationale in our definition cor-
responds to the selected words, i.e., {xk|zk = 1}.
We will use (z,x) as the shorthand for this rationale
and, thus, enc(z,x) refers to the target vector ob-
tained by applying the encoder to the rationale as the
input. Our goal here is to formalize how the ratio-
nale can be made short and meaningful yet function
well in conjunction with the encoder. Our generator
and encoder are learned jointly to interact well but
they are treated as independent units for modularity.

The generator is guided in two ways during learn-
ing. First, the rationale that it produces must suffice
as a replacement for the input text. In other words,
the target vector (sentiment) arising from the ratio-
nale should be close to the gold sentiment. The cor-
responding loss function is given by

L(z,x,y) = kenc(z,x)� yk22

Note that the loss function depends directly (para-
metrically) on the encoder but only indirectly on the
generator via the sampled selection.

Second, we must guide the generator to realize
short and coherent rationales. It should select only a
few words and those selections should form phrases
(consecutive words) rather than represent isolated,
disconnected words. We therefore introduce an ad-
ditional regularizer over the selections

⌦(z) = �1kzk+ �2
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where the first term penalizes the number of selec-
tions while the second one discourages transitions
(encourages continuity of selections). Note that this
regularizer also depends on the generator only indi-
rectly via the selected rationale. This is because it
is easier to assess the rationale once produced rather
than directly guide how it is obtained.

Our final cost function is the combination of the
two, cost(z,x,y) = L(z,x,y) + ⌦(z). Since the
selections are not provided during training, we min-
imize the expected cost:

min
✓e,✓g
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(x,y)2D

Ez⇠gen(x) [cost(z,x,y)]

where ✓e and ✓g denote the set of parameters of the
encoder and generator, respectively, and D is the
collection of training instances. Our joint objective
encourages the generator to compress the input text
into coherent summaries that work well with the as-
sociated encoder it is trained with.

Minimizing the expected cost is challenging since
it involves summing over all the possible choices
of rationales z. This summation could potentially
be made feasible with additional restrictive assump-
tions about the generator and encoder. However, we
assume only that it is possible to efficiently sample
from the generator.

The movie experience was awful

The movie experience was awful

Explain

Predict 

Doubly stochastic gradient We now derive a
sampled approximation to the gradient of the ex-
pected cost objective. This sampled approxima-
tion is obtained separately for each input text x so
as to work well with an overall stochastic gradient
method. Consider therefore a training pair (x,y).
For the parameters of the generator ✓g,

@Ez⇠gen(x) [cost(z,x,y)]
@✓g

=
X
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cost(z,x,y) · @p(z|x)
@✓g

=
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Using the fact (log f(✓))0 = f 0(✓)/f(✓), we get
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The last term is the expected gradient where the ex-
pectation is taken with respect to the generator dis-
tribution over rationales z. Therefore, we can simply
sample a few rationales z from the generator gen(x)
and use the resulting average gradient in an overall
stochastic gradient method. A sampled approxima-
tion to the gradient with respect to the encoder pa-
rameters ✓e can be derived similarly,

@Ez⇠gen(x) [cost(z,x,y)]
@✓e

=
X

z

@cost(z,x,y)
@✓e

· p(z|x)

= Ez⇠gen(x)


@cost(z,x,y)

@✓e

�

Choice of recurrent unit We employ recurrent
convolution (RCNN), a refinement of local-ngram
based convolution. RCNN attempts to learn n-gram
features that are not necessarily consecutive, and
average features in a dynamic (recurrent) fashion.
Specifically, for bigrams (filter width n = 2) RCNN
computes ht = f(xt,ht�1) as follows

Number of reviews 1580k
Avg length of review 144.9
Avg correlation between aspects 63.5%
Max correlation between two aspects 79.1%
Number of annotated reviews 994

Table 1: Statistics of the beer review dataset.

�t = �(W�xt +U�ht�1 + b�)

c(1)t = �t � c(1)t�1 + (1� �t)� (W1xt)

c(2)t = �t � c(2)t�1 + (1� �t)� (c(1)t�1 +W2xt)

ht = tanh(c(2)t + b)

RCNN has been shown to work remarkably in clas-
sification and retrieval applications (Lei et al., 2015;
Lei et al., 2016) compared to other alternatives such
CNNs and LSTMs. We use it for all the recurrent
units introduced in our model.

5 Experiments

We evaluate the proposed joint model on two NLP
applications: (1) multi-aspect sentiment analysis on
product reviews and (2) similar text retrieval on
AskUbuntu question answering forum.

5.1 Multi-aspect Sentiment Analysis
Dataset We use the BeerAdvocate2 review dataset
used in prior work (McAuley et al., 2012).3 This
dataset contains 1.5 million reviews written by the
website users. The reviews are naturally multi-
aspect – each of them contains multiple sentences
describing the overall impression or one particu-
lar aspect of a beer, including appearance, smell

(aroma), palate and the taste. In addition to the writ-
ten text, the reviewer provides the ratings (on a scale
of 0 to 5 stars) for each aspect as well as an overall
rating. The ratings can be fractional (e.g. 3.5 stars),
so we normalize the scores to [0, 1] and use them as
the (only) supervision for regression.

McAuley et al. (2012) also provided sentence-
level annotations on around 1,000 reviews. Each
sentence is annotated with one (or multiple) aspect
label, indicating what aspect this sentence covers.

2www.beeradvocate.com
3http://snap.stanford.edu/data/

web-BeerAdvocate.html

Parameterised 
Model (BERT)

Parameterised 
Model (BERT)
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Explanation Performance

Fact Checking

How human-like are the explanations ? Explanation accuracy — Macro Token-wise F1 

Human annotation: the san francisco bay area, 
referred to locally as the bay area is a populous 
region surrounding the san francisco and san 
pablo estuaries in northern california. The region 
encompasses the major cities and metropolitan 
areas of san jose, san francisco, and Oakland, 
along with smaller urban and rural areas. The bay 
area's nine counties are ......Santa Clara, Solana 
and Sonoma. The combined statistical area of the 
region is the second largest in california after the 
Los Angeles area.  

Query: san francisco bay area contains zero towns  

Extractive explanation: the san francisco bay area, referred to locally as 
the bay area is a populous region surrounding the san francisco and san 
pablo estuaries in northern california. The region encompasses the major 
cities and metropolitan areas of san jose, san francisco, and Oakland, 
along with smaller urban and rural areas. The bay area's nine counties are 
......Santa Clara, Solana and Sonoma. The combined statistical area of the 
region is the second largest in california after the Los Angeles area.  

Soft-matching metric: Token-wise precision, recall, and F1
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Explanation Performance

Fact Checking

How human-like are the explanations ? Explanation accuracy — Macro Token-wise F1 

How much does Task Performance drop ? Task accuracy — Macro F1 

Human annotation: the san francisco bay area, 
referred to locally as the bay area is a populous 
region surrounding the san francisco and san 
pablo estuaries in northern california. The region 
encompasses the major cities and metropolitan 
areas of san jose, san francisco, and Oakland, 
along with smaller urban and rural areas. The bay 
area's nine counties are ......Santa Clara, Solana 
and Sonoma. The combined statistical area of the 
region is the second largest in california after the 
Los Angeles area.  

Query: san francisco bay area contains zero towns  

Extractive explanation: the san francisco bay area, referred to locally as 
the bay area is a populous region surrounding the san francisco and san 
pablo estuaries in northern california. The region encompasses the major 
cities and metropolitan areas of san jose, san francisco, and Oakland, 
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region is the second largest in california after the Los Angeles area.  
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Abstract

State-of-the-art models in NLP are now pre-
dominantly based on deep neural networks
that are opaque in terms of how they come
to make predictions. This limitation has
increased interest in designing more inter-
pretable deep models for NLP that reveal the
‘reasoning’ behind model outputs. But work
in this direction has been conducted on dif-
ferent datasets and tasks with correspondingly
unique aims and metrics; this makes it difficult
to track progress. We propose the Evaluating
Rationales And Simple English Reasoning
(ERASER ) benchmark to advance research
on interpretable models in NLP. This bench-
mark comprises multiple datasets and tasks for
which human annotations of “rationales” (sup-
porting evidence) have been collected. We pro-
pose several metrics that aim to capture how
well the rationales provided by models align
with human rationales, and also how faithful
these rationales are (i.e., the degree to which
provided rationales influenced the correspond-
ing predictions). Our hope is that releasing this
benchmark facilitates progress on designing
more interpretable NLP systems. The bench-
mark, code, and documentation are available
at https://www.eraserbenchmark.com/

1 Introduction

Interest has recently grown in designing NLP sys-
tems that can reveal why models make specific
predictions. But work in this direction has been
conducted on different datasets and using different
metrics to quantify performance; this has made it
difficult to compare methods and track progress.
We aim to address this issue by releasing a stan-
dardized benchmark of datasets — repurposed and
augmented from pre-existing corpora, spanning a
range of NLP tasks — and associated metrics for
measuring different properties of rationales. We re-
fer to this as the Evaluating Rationales And Simple
English Reasoning (ERASER ) benchmark.

Commonsense Explanations (CoS-E)

Where do you find the most amount of leafs?

(a) Compost pile  (b) Flowers  (c) Forest  (d) Field  (e) Ground

Movie Reviews

In this movie, … Plots to take over the world. The acting is 
great! The soundtrack is run-of-the-mill, but the action more 
than makes up for it

(a) Positive  (b) Negative

Evidence Inference

Article Patients for this trial were recruited … Compared with 
0.9% saline, 120 mg of inhaled nebulized furosemide had no 
effect on breathlessness during exercise.

 (a) Sig. decreased  (b) No sig. difference (c) Sig. increased

Prompt With respect to breathlessness, what is the reported 
difference between patients receiving placebo and those 
receiving furosemide?

e-SNLI

H A man in an orange vest leans over a pickup truck
P A man is touching a truck

 (a) Entailment  (b) Contradiction  (c) Neutral

Figure 1: Examples of instances, labels, and rationales
illustrative of four (out of seven) datasets included in
ERASER. The ‘erased’ snippets are rationales.

In curating and releasing ERASER we take in-
spiration from the stickiness of the GLUE (Wang
et al., 2019b) and SuperGLUE (Wang et al., 2019a)
benchmarks for evaluating progress in natural lan-
guage understanding tasks, which have driven rapid
progress on models for general language repre-
sentation learning. We believe the still somewhat
nascent subfield of interpretable NLP stands to ben-
efit similarly from an analogous collection of stan-
dardized datasets and tasks; we hope these will
aid the design of standardized metrics to measure
different properties of ‘interpretability’, and we
propose a set of such metrics as a starting point.

Interpretability is a broad topic with many possi-
ble realizations (Doshi-Velez and Kim, 2017; Lip-
ton, 2016). In ERASER we focus specifically on
rationales, i.e., snippets that support outputs. All
datasets in ERASER include such rationales, ex-
plicitly marked by human annotators. By definition,
rationales should be sufficient to make predictions,
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these take the form of token-level importance
scores. Gradient-based explanations are a standard
example (Sundararajan et al., 2017; Smilkov et al.,
2017). These enjoy a clear semantics (describing
how perturbing inputs locally affects outputs), but
may nonetheless exhibit counterintuitive behaviors
(Feng et al., 2018).

Gradients of course assume model differentia-
bility. Other methods do not require any model
properties. Examples include LIME (Ribeiro et al.,
2016) and Alvarez-Melis and Jaakkola (2017);
these methods approximate model behavior lo-
cally by having it repeatedly make predictions over
perturbed inputs and fitting a simple, explainable
model over the outputs.

Acquiring rationales. Aside from interpretability
considerations, collecting rationales from annota-
tors may afford greater efficiency in terms of model
performance realized given a fixed amount of anno-
tator effort (Zaidan and Eisner, 2008). In particular,
recent work by McDonnell et al. (2017, 2016) has
observed that at least for some tasks, asking anno-
tators to provide rationales justifying their catego-
rizations does not impose much additional effort.
Combining rationale annotation with active learn-
ing (Settles, 2012) is another promising direction
(Wallace et al., 2010; Sharma et al., 2015).

Learning from rationales. Work on learning from
rationales marked by annotators for text classifica-
tion dates back over a decade (Zaidan et al., 2007).
Earlier efforts proposed extending standard dis-
criminative models like Support Vector Machines
(SVMs) with regularization terms that penalized
parameter estimates which disagreed with provided
rationales (Zaidan et al., 2007; Small et al., 2011).
Other efforts have attempted to specify generative
models of rationales (Zaidan and Eisner, 2008).

More recent work has aimed to exploit ratio-
nales in training neural text classifiers. Zhang et al.
(2016) proposed a rationale-augmented Convolu-
tional Neural Network (CNN) for text classifica-
tion, explicitly trained to identify sentences support-
ing categorizations. Strout et al. (2019) showed that
providing this model with rationales during train-
ing yields predicted rationales that are preferred
by humans (compared to rationales produced with-
out explicit supervision). Other work has proposed
‘pipeline’ approaches in which independent mod-
els are trained to perform rationale extraction and
classification on the basis of these, respectively
(Lehman et al., 2019; Chen et al., 2019), assuming

Name Size (train/dev/test) Tokens Comp?

Evidence Inference 7958 / 972 / 959 4761 ◇
BoolQ 6363 / 1491 / 2817 3583 ◇
Movie Reviews 1600 / 200 / 200 774 ◆
FEVER 97957 / 6122 / 6111 327
MultiRC 24029 / 3214 / 4848 303
CoS-E 8733 / 1092 / 1092 28
e-SNLI 911938 / 16449 / 16429 16

Table 1: Overview of datasets in the ERASER bench-
mark. Tokens is the average number of tokens in each
document. Comprehensive rationales mean that all sup-
porting evidence is marked; denotes cases where this
is (more or less) true by default; ◇, ◆ are datasets for
which we have collected comprehensive rationales for
either a subset or all of the test datasets, respectively.
Additional information can be found in Appendix A.

.

explicit training data is available for the former.
Rajani et al. (2019) fine-tuned a Transformer-

based language model (Radford et al., 2018) on
free-text rationales provided by humans, with an
objective of generating open-ended explanations to
improve performance on downstream tasks.
Evaluating rationales. Work on evaluating ratio-
nales has often compared these to human judg-
ments (Strout et al., 2019; Doshi-Velez and Kim,
2017), or elicited other human evaluations of ex-
planations (Ribeiro et al., 2016; Lundberg and Lee,
2017; Nguyen, 2018). There has also been work on
visual evaluations of saliency maps (Li et al., 2016;
Ding et al., 2017; Sundararajan et al., 2017).

Measuring agreement between extracted and
human rationales (or collecting subjective assess-
ments of them) assesses the plausibility of ratio-
nales, but such approaches do not establish whether
the model actually relied on these particular ratio-
nales to make a prediction. We refer to rationales
that correspond to the inputs most relied upon to
come to a disposition as faithful.

Most automatic evaluations of faithfulness mea-
sure the impact of perturbing or erasing words or
tokens identified as important on model output (Ar-
ras et al., 2017; Montavon et al., 2017; Serrano and
Smith, 2019; Samek et al., 2016; Jain and Wallace,
2019). We build upon these methods in Section
4. Finally, we note that a recent article urges the
community to evaluate faithfulness on a continuous
scale of acceptability, rather than viewing this as a
binary proposition (Jacovi and Goldberg, 2020).

3 Datasets in ERASER

For all datasets in ERASER we distribute both ref-
erence labels and rationales marked by humans
as supporting these in a standardized format. We

How human-like are the explanations ?
Soft-matching metric: Token-wise precision, recall, and F1

How faithful are the explanations to the model ?

problem : a model may provide rationales that are plausible (agreeable to humans) but that it did not rely on the for its output.
Need: rationales extracted for an instance in this case ought to have meaningfully in- fluenced its prediction for the same
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Where do you find the most amount of leafs? Where do you find the most amount of leafs?

(a) Com
post pile 

(b) Flowers
(c) Forest
(d) Field

(e) Ground
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(d) Field

(e) Ground

… …

p̂(Forest|xi)
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Figure 2: Illustration of faithfulness scoring metrics, comprehensiveness and sufficiency, on the Commonsense
Explanations (CoS-E) dataset. For the former, erasing the tokens comprising the provided rationale (x̃i) ought to
decrease model confidence in the output ‘Forest’. For the latter, the model should be able to come to a similar
disposition regarding ‘Forest’ using only the rationales ri.

here means that the model became more confident
in its prediction after the rationales were removed;
this would seem counter-intuitive if the rationales
were indeed the reason for its prediction.

Sufficiency. This captures the degree to which
the snippets within the extracted rationales are ade-
quate for a model to make a prediction.

sufficiency =m(xi)j −m(ri)j (2)

These metrics are illustrated in Figure 2.
As defined, the above measures have assumed

discrete rationales ri. We would also like to eval-
uate the faithfulness of continuous importance
scores assigned to tokens by models. Here we
adopt a simple approach for this. We convert soft
scores over features si provided by a model into
discrete rationales ri by taking the top−kd values,
where kd is a threshold for dataset d. We set kd to
the average rationale length provided by humans
for dataset d (see Table 4). Intuitively, this says:
How much does the model prediction change if we
remove a number of tokens equal to what humans
use (on average for this dataset) in order of the
importance scores assigned to these by the model.
Once we have discretized the soft scores into ra-
tionales in this way, we compute the faithfulness
scores as per Equations 1 and 2.

This approach is conceptually simple. It is also
computationally cheap to evaluate, in contrast to
measures that require per-token measurements, e.g.,
importance score correlations with ‘leave-one-out’
scores (Jain and Wallace, 2019), or counting how
many ‘important’ tokens need to be erased before

a prediction flips (Serrano and Smith, 2019). How-
ever, the necessity of discretizing continuous scores
forces us to pick a particular threshold k.

We can also consider the behavior of these mea-
sures as a function of k, inspired by the measure-
ments proposed in Samek et al. (2016) in the con-
text of evaluating saliency maps for image classi-
fication. They suggested ranking pixel regions by
importance and then measuring the change in out-
put as they are removed in rank order. Our datasets
comprise documents and rationales with quite dif-
ferent lengths; to make this measure comparable
across datasets, we construct bins designating the
number of tokens to be deleted. Denoting the to-
kens up to and including bin k for instance i by rik,
we define an aggregate comprehensiveness mea-
sure:

1

�B� + 1
( �B��
k=0

m(xi)j −m(xi�rik)j) (3)

This is defined for sufficiency analogously. Here
we group tokens into k = 5 bins by grouping them
into the top 1%, 5%, 10%, 20% and 50% of to-
kens, with respect to the corresponding importance
score. We refer to these metrics as “Area Over the
Perturbation Curve” (AOPC).7

These AOPC sufficiency and comprehensiveness
measures score a particular token ordering under
a model. As a point of reference, we also report
these when random scores are assigned to tokens.

7Our AOPC metrics are similar in concept to ROAR
(Hooker et al., 2019) except that we re-use an existing model
as opposed to retraining for each fraction.

Dataset Cohen  F1 P R #Annotators/doc #Documents
Evidence Inference - - - - - -
BoolQ 0.618 ± 0.194 0.617 ± 0.227 0.647 ± 0.260 0.726 ± 0.217 3 199
Movie Reviews 0.712 ± 0.135 0.799 ± 0.138 0.693 ± 0.153 0.989 ± 0.102 2 96
FEVER 0.854 ± 0.196 0.871 ± 0.197 0.931 ± 0.205 0.855 ± 0.198 2 24
MultiRC 0.728 ± 0.268 0.749 ± 0.265 0.695 ± 0.284 0.910 ± 0.259 2 99
CoS-E 0.619 ± 0.308 0.654 ± 0.317 0.626 ± 0.319 0.792 ± 0.371 2 100
e-SNLI 0.743 ± 0.162 0.799 ± 0.130 0.812 ± 0.154 0.853 ± 0.124 3 9807

Table 2: Human agreement with respect to rationales. For Movie Reviews and BoolQ we calculate the mean
agreement of individual annotators with the majority vote per token, over the two-three annotators we hired via
Upwork and Amazon Turk, respectively. The e-SNLI dataset already comprised three annotators; for this we
calculate mean agreement between individuals and the majority. For CoS-E, MultiRC, and FEVER, members of
our team annotated a subset to use a comparison to the (majority of, where appropriate) existing rationales. We
collected comprehensive rationales for Evidence Inference from Medical Doctors; as they have a high amount of
expertise, we would expect agreement to be high, but have not collected redundant comprehensive annotations.

4.1 Agreement with human rationales

The simplest means of evaluating extracted ratio-
nales is to measure how well they agree with those
marked by humans. We consider two classes of
metrics, appropriate for models that perform dis-
crete and ‘soft’ selection, respectively.

For the discrete case, measuring exact matches
between predicted and reference rationales is likely
too harsh.6 We thus consider more relaxed mea-
sures. These include Intersection-Over-Union
(IOU), borrowed from computer vision (Evering-
ham et al., 2010), which permits credit assignment
for partial matches. We define IOU on a token level:
for two spans, it is the size of the overlap of the
tokens they cover divided by the size of their union.
We count a prediction as a match if it overlaps with
any of the ground truth rationales by more than
some threshold (here, 0.5). We use these partial
matches to calculate an F1 score. We also measure
token-level precision and recall, and use these to
derive token-level F1 scores.

Metrics for continuous or soft token scoring
models consider token rankings, rewarding models
for assigning higher scores to marked tokens. In
particular, we take the Area Under the Precision-
Recall curve (AUPRC) constructed by sweeping a
threshold over token scores. We define additional
metrics for soft scoring models below.

In general, the rationales we have for tasks are
sufficient to make judgments, but not necessarily
comprehensive. However, for some datasets we
have explicitly collected comprehensive rationales
for at least a subset of the test set. Therefore, on
these datasets recall evaluates comprehensiveness
directly (it does so only noisily on other datasets).

6Consider that an extra token destroys the match but not
usually the meaning

We highlight which corpora contain comprehensive
rationales in the test set in Table 3.

4.2 Measuring faithfulness

As discussed above, a model may provide ratio-
nales that are plausible (agreeable to humans) but
that it did not rely on for its output. In many set-
tings one may want rationales that actually explain
model predictions, i.e., rationales extracted for an
instance in this case ought to have meaningfully in-
fluenced its prediction for the same. We call these
faithful rationales. How best to measure rationale
faithfulness is an open question. In this first version
of ERASER we propose simple metrics motivated
by prior work (Zaidan et al., 2007; Yu et al., 2019).
In particular, following Yu et al. (2019) we define
metrics intended to measure the comprehensiveness
(were all features needed to make a prediction se-
lected?) and sufficiency (do the extracted rationales
contain enough signal to come to a disposition?) of
rationales, respectively.

Comprehensiveness. To calculate rationale
comprehensiveness we create contrast exam-
ples (Zaidan et al., 2007): We construct a con-
trast example for xi, x̃i, which is xi with the pre-
dicted rationales ri removed. Assuming a classifi-
cation setting, let m(xi)j be the original prediction
provided by a model m for the predicted class j.
Then we consider the predicted probability from
the model for the same class once the supporting
rationales are stripped. Intuitively, the model ought
to be less confident in its prediction once rationales
are removed from xi. We can measure this as:

comprehensiveness =m(xi)j −m(xi�ri)j (1)

A high score here implies that the rationales were
indeed influential in the prediction, while a low
score suggests that they were not. A negative value

Original pred. pred. with rationale removed
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Figure 2: Illustration of faithfulness scoring metrics, comprehensiveness and sufficiency, on the Commonsense
Explanations (CoS-E) dataset. For the former, erasing the tokens comprising the provided rationale (x̃i) ought to
decrease model confidence in the output ‘Forest’. For the latter, the model should be able to come to a similar
disposition regarding ‘Forest’ using only the rationales ri.

here means that the model became more confident
in its prediction after the rationales were removed;
this would seem counter-intuitive if the rationales
were indeed the reason for its prediction.

Sufficiency. This captures the degree to which
the snippets within the extracted rationales are ade-
quate for a model to make a prediction.

sufficiency =m(xi)j −m(ri)j (2)

These metrics are illustrated in Figure 2.
As defined, the above measures have assumed

discrete rationales ri. We would also like to eval-
uate the faithfulness of continuous importance
scores assigned to tokens by models. Here we
adopt a simple approach for this. We convert soft
scores over features si provided by a model into
discrete rationales ri by taking the top−kd values,
where kd is a threshold for dataset d. We set kd to
the average rationale length provided by humans
for dataset d (see Table 4). Intuitively, this says:
How much does the model prediction change if we
remove a number of tokens equal to what humans
use (on average for this dataset) in order of the
importance scores assigned to these by the model.
Once we have discretized the soft scores into ra-
tionales in this way, we compute the faithfulness
scores as per Equations 1 and 2.

This approach is conceptually simple. It is also
computationally cheap to evaluate, in contrast to
measures that require per-token measurements, e.g.,
importance score correlations with ‘leave-one-out’
scores (Jain and Wallace, 2019), or counting how
many ‘important’ tokens need to be erased before

a prediction flips (Serrano and Smith, 2019). How-
ever, the necessity of discretizing continuous scores
forces us to pick a particular threshold k.

We can also consider the behavior of these mea-
sures as a function of k, inspired by the measure-
ments proposed in Samek et al. (2016) in the con-
text of evaluating saliency maps for image classi-
fication. They suggested ranking pixel regions by
importance and then measuring the change in out-
put as they are removed in rank order. Our datasets
comprise documents and rationales with quite dif-
ferent lengths; to make this measure comparable
across datasets, we construct bins designating the
number of tokens to be deleted. Denoting the to-
kens up to and including bin k for instance i by rik,
we define an aggregate comprehensiveness mea-
sure:
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m(xi)j −m(xi�rik)j) (3)

This is defined for sufficiency analogously. Here
we group tokens into k = 5 bins by grouping them
into the top 1%, 5%, 10%, 20% and 50% of to-
kens, with respect to the corresponding importance
score. We refer to these metrics as “Area Over the
Perturbation Curve” (AOPC).7

These AOPC sufficiency and comprehensiveness
measures score a particular token ordering under
a model. As a point of reference, we also report
these when random scores are assigned to tokens.

7Our AOPC metrics are similar in concept to ROAR
(Hooker et al., 2019) except that we re-use an existing model
as opposed to retraining for each fraction.

pred. with just rationaleOriginal pred.
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Problem
The movie experience was awful

The movie experience was awful

Explain

Predict 

Parameterised 
Model (BERT)

Parameterised 
Model (BERT)

Optimizing just from the task labels is hard 
Explanation generator is task unaware

Policy-gradient optimization known to be high variance
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Explanation Data

The movie experience was awful

The movie experience was awful

Annotate Explain
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BERT
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Explanation Data

The movie experience was awful

The movie experience was awful

Annotate Explain

0 0 0 1 1

BERT

Lexp =
1

|S|

|S|X

i=1

|Sti | · BCE
�
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Explain and Predict

The movie experience was awful

was awful

Explain

BERT

Predict 

Decoder Decoder

Lloss = Ltask + �Lexp
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Shared parameters during input encoding ensures that explanations are task aware

Pooled
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Encoder representations regularised by explanation data

Multi-task  
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Explain and Predict, then Predict Again 

The movie experience was awful

was awful

Explain

BERT

Predict 

Decoder Decoder
Lloss = Ltask + �Lexp
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Explanation Performance

Fact Checking Question Answering Sentiment Classification

No Explanation Data 0.83 No Explanation 
Data 0.43 No Explanation Data 0.32

ExPred 0.84 ExPred 0.64 ExPred 0.35

No Explanation Data Baselines that also produces binary masks  
[Lei et al. 17], [Bastings et al. 19, Lehman et al. 19, DeYoung ‘20]

How human-like are the explanations ? Explanation accuracy — Macro Token-wise F1 

Full Input 0.91 Full Input 0.70 Full Input 0.89

No Explanation Data 0.83 No Explanation Data 0.65 No Explanation Data 0.79

ExPred 0.89 ExPred 0.69 ExPred 0.91

How much does Task Performance drop ? Task accuracy — Macro F1 
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Fact Checking

Retrieved Document: the san francisco bay area, referred to locally as the 
bay area is a populous region surrounding the san francisco and san pablo 
estuaries in northern california. The region encompasses the major cities 
and metropolitan areas of san jose, san francisco, and Oakland, along with 
smaller urban and rural areas. The bay area's nine counties are ......Santa 
Clara, Solana and Sonoma. The combined statistical area of the region is the 
second largest in california after the Los Angeles area.  

Query: san francisco bay area contains zero towns  
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Fact Checking

Retrieved Document: the san francisco bay area, referred to locally as the 
bay area is a populous region surrounding the san francisco and san pablo 
estuaries in northern california. The region encompasses the major cities 
and metropolitan areas of san jose, san francisco, and Oakland, along with 
smaller urban and rural areas. The bay area's nine counties are ......Santa 
Clara, Solana and Sonoma. The combined statistical area of the region is the 
second largest in california after the Los Angeles area.  

Query: san francisco bay area contains zero towns  

[Zhang, Rudra & Anand WSDM ’21]  
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Rationale-based approaches

Rationalization for Explainable NLP: A Survey

SAI GURRAPU, Department of Computer Science, Virginia Tech, USA

AJAY KULKARNI, Department of Computational and Data Sciences, George Mason University, USA

LIFU HUANG, Department of Computer Science, Virginia Tech, USA

ISMINI LOURENTZOU, Department of Computer Science, Virginia Tech, USA

LAURA FREEMAN, Department of Statistics, Virginia Tech, USA

FERAS A. BATARSEH, Department of Electrical and Computer Engineering, Virginia Tech, USA

ABSTRACT

Recent advances in deep learning have improved the performance of many Natural Language Processing (NLP) tasks such
as translation, question-answering, and text classi�cation. However, this improvement comes at the expense of model
explainability. Black-box models make it di�cult to understand the internals of a system and the process it takes to arrive at
an output. Numerical (LIME, Shapley) and visualization (saliency heatmap) explainability techniques are helpful; however,
they are insu�cient because they require specialized knowledge. These factors led rationalization to emerge as a more
accessible explainable technique in NLP. Rationalization justi�es a model’s output by providing a natural language explanation
(rationale). Recent improvements in natural language generation have made rationalization an attractive technique because it
is intuitive, human-comprehensible, and accessible to non-technical users. Since rationalization is a relatively new �eld, it is
disorganized. As the �rst survey, rationalization literature in NLP from 2007-2022 is analyzed. This survey presents available
methods, explainable evaluations, code, and datasets used across various NLP tasks that use rationalization. Further, a new
sub�eld in Explainable AI (XAI), namely, Rational AI (RAI), is introduced to advance the current state of rationalization. A
discussion on observed insights, challenges, and future directions is provided to point to promising research opportunities.

Keywords: Rationalization, Rational AI, Natural Language Generation, Natural Language Processing, Language Modeling,
Explainable AI

1 INTRODUCTION

The commercialization of NLP has grown signi�cantly in the past decade. Text has a ubiquitous nature which
enables many practical NLP use cases and applications, including but not limited to text classi�cation, fact-
checking, machine translation, text2speech, and others, which signi�cantly impact our society. Despite its diverse
and practical applications, NLP faces many challenges; an important one is explainability (Madsen et al. 2021).

In the past, NLP systems have traditionally relied on white-box techniques. These techniques - rules, decision
trees, hidden Markov models, and logistic regression - are inherently explainable (Danilevsky et al. 2020). The
recent developments in deep learning have contributed to the emergence of black-box architectures that improve
task performance at the expense of model explainability. Such black-box predictions make understanding how a
model arrives at a decision challenging. This lack of explainability is a signi�cant cause of concern for critical
applications. For example, directly applying natural language generation methods to automatically generate

Authors’ Information: Sai Gurrapu, saig@vt.edu, Department of Computer Science, Virginia Tech, USA; Ajay Kulkarni, lakulkar8@gmu.edu,
Department of Computational and Data Sciences, George Mason University, USA; Lifu Huang, lifuh@vt.edu, Department of Computer
Science, Virginia Tech, USA; Ismini Lourentzou, ilourentzou@vt.edu, Department of Computer Science, Virginia Tech, USA; Laura Freeman,
laura.freeman@vt.edu, Department of Statistics, Virginia Tech, USA; Feras A. Batarseh, batarseh@vt.edu, Department of Electrical and
Computer Engineering, Virginia Tech, USA.
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NLP task. Overall, we selected six articles in multiple NLP domains, �ve on Machine Reading Comprehension
and Sentiment Analysis, four on Text Classi�cation, Fact-Checking and Commonsense Reasoning, and three on
Natural Languages Inference, and two articles on Neural Machine Translation (NMT).

Fig. 3. Collected Papers Per Year

4 RATIONALIZATION TECHNIQUES

In this section, we discuss relevant papers and their rationalization techniques categorized by the NLP tasks listed
in Figure 2. Tables with important information on the papers for each subsection are presented at the beginning.

4.1 Machine Reading Comprehension

Table 3. Machine Reading Comprehension Papers

Paper Name Year Explanation Models XAI Metric Dataset Code

(Sharp et al. 2017) - 2017 Extractive TF-IDF, FFNN - AI2 Science, Aristo Mini -
(Ling et al. 2017) - 2017 Extractive LSTM, Seq2Seq - AQuA X

(Mihaylov et al. 2018) OpenBookQA 2018 Abstractive BiLSTM Max-out - OpenBookQA, X
(Xie et al. 2020) WorldTree V2 2018 Abstractive TF-IDF, BERT - WorldTree V2 X

(Lakhotia et al. 2021) FiD-Ex 2021 Extractive T5, BERT-to-BERT - Natural Questions -

MRC enables a model to answer questions regarding a given context (Baradaran et al. 2022). For this reason, it
also frequently referred to as Question Answering (QA) Systems. For MRC applications, we found �ve recent
articles from which three articles provide novel datasets (Mihaylov et al. 2018), (Xie et al. 2020), (Ling et al. 2017)
and the remaining articles (Lakhotia et al. 2021) and (Sharp et al. 2017) each propose a new MRC framework.
The �rst article, published in 2018, presented a new question-answering dataset based on the open book

exam environment for elementary-level science - OpenBookQA (Mihaylov et al. 2018). This dataset consists
of two components – i) Questions (Q): a set of 5,958 multiple choice questions and ii) Facts (F): a set of 1,326
diverse facts about elementary level science. This dataset was further tested for evaluating the performance
of existing QA systems and then compared with the human performance. The results indicated that human
performance was close to 92%, but many existing QA systems showed poor performance close to the random
guessing baseline of 25%. Additionally, the authors found that simple neural networks achieved an accuracy of
about 50%, but it is still not close to the human performance, about 92%. Recently an extension of the WorldTree

popular in NLP research
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Rationales for ranking

Extractive explanations for text ranking [Leonhardt, Rudra & Anand TOIS ’23]  

Ranker

Selector

s1 s2 s3 s4 s|d|. . .

X X ⇥ ⇥ X

q

Figure 5.2: The S������A���R��� paradigm. The document d is split into sentences si. The
selector assigns a score to each sentence with respect to the query q. The scores determine
which of the sentences are selected as the input for the ranker.

nism, resulting in a succinct, query-based document representation. As an added advantage,
our sentence selection allows for choosing a concise query-based document representation
as input into size limited models like BERT, in contrast to other heuristic truncation ap-
proaches [ 33 ].

Within our modular framework, we consider joint models that are trained end-to-end with
gradient descent. Speci�cally, we allow the user to regulate the sparsity by setting the num-
ber of sentences k to be selected. The selection is akin to sampling from a latent distribution
over sentences in a document. We use a parameterized model to output such a distribu-
tion and apply the Gumbel-max trick. Finally, we use relaxed subset sampling to enforce the
user-speci�ed sparsity k, i.e., the number of sentences to be selected for the summary or
explanation. This allows us to approximate hard masking, i.e., the multiplication of the input
with a boolean mask in order to remove certain parts, by using soft masking (or continuous
masks), where a similar result is achieved, but the process remains fully di�erentiable and
thus trainable end-to-end.

We conduct extensive empirical evaluation over three document ranking datasets—TREC�
DL�D��’19, C���17, and C���W��09. Our intention is not to achieve the best performance
in document ranking. Instead, we aim at presenting a ranking model that is interpretable
without compromising ranking performance. First, we �nd that query-speci�c sparse doc-
ument representation by sentence selection can improve the task performance over heuris-
tic sentence selection approaches [  33 ]. Second, and more striking, our S������A���R���
models (with 20 selected sentences) perform on par with and sometimes outperform other
document modeling approaches that model the entire document. Furthermore, we show how
S������A���R��� can be used to explain the decisions of BERT rankers that operate only
on small parts of the input document.

Additionally, we conduct experiments on twelve diverse datasets provided by the BEIR

73

Select and rank paradigm: Can we trade-off sparsity and ranking quality by 
controllably selecting a subset of sentences. 
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Selectors 

Extractive explanations for text ranking [Leonhardt, Rudra & Anand TOIS ’23]  

Selectors: Selectors should be simple for efficiency 

5.2 S������A���R���

Sent. rep.Sent. rep.

Scores

Embedded
query

Embedded
document

Split

PoolPool

Feed-forward

Q. rep. Sent. rep.

Sim.

ScoresScores

(a) Linear selector

Sent. rep.

Scores

Embedded
query

Embedded
document

LSTM encoder

SplitPool

Att. & pool

Sent. rep.Sent. rep.

Q. rep.

Sim.

ScoresScores

(b) Attention-based LSTM selector

Figure 5.3: The selectors used in the end-to-end approach. The linear selector represents
sentences as the average of their embedded tokens and applies a linear layer. The LSTM
selector uses a simple attention mechanism.

83

Optimizing selectors: Gumbel-max trick + relaxed subset sampling  
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Insights

Extractive explanations for text ranking [Leonhardt, Rudra & Anand TOIS ’23]  

5.4 Results

TREC�DL�D��’19 C���17 C���W��09

AP nDCG@20 RR AP nDCG@20 RR AP nDCG@20 RR

QL 0.237 0.487[ab] 0.785 0.203 0.395 0.686 0.165 0.277 0.487

D���L������ 0.203 0.434[ab] 0.731 0.237 0.437 0.742 0.165 0.284 0.503
BERT�3S 0.245 0.519[ab] 0.799 0.204 0.406 0.694 0.178 0.306 0.544

BERT�CLS 0.260 0.581 0.874 0.196 0.419 0.749 0.178 0.313 0.572
PL�SEM 0.265 0.571 0.920 0.207 0.414 0.768 0.167 0.286 0.534

[a] S�R�LIN 0.269 0.597 0.946 0.203 0.411 0.710 0.174 0.303 0.535
[b] S�R�ATT 0.271 0.590 0.924 0.205 0.403 0.714 0.168 0.292 0.518

Table 5.2: Ranking performance. S������A���R��� models use k = 20. For D���
L������, we report the best strategy (�rstP, maxP, avgP for TREC�DL�D��’19, C���17, and
C���W��09, respectively). Signi�cant improvements (nDCG@20) at a level of 95% are indi-
cated by superscripts.

AP nDCG@10

M����P������ 0.232 0.567
C��PACRR 0.231 0.550
C����KNRM 0.241 0.565
TKL�2� 0.264 0.634

S�R�LIN 0.269 0.646
S�R�ATT 0.271 0.639

Table 5.3: Neural baselines on TREC�DL�D��’19. S������A���R��� models use k = 20.
Results are taken from [ 68 ]. TKL�2� refers to TKL operating on 2000 tokens.

and PL�LSTM. PL�SEM shows the best or comparable performance for all three datasets. PL�
BM25, while slightly worse, also shows promising performance. The compact representation
of documents also helps in developing computationally e�cient rankingmodels and reducing
noise.

Our end-to-end models, S�R�LIN and S�R�ATT, show improvements over the pipeline
models in most cases. Surprisingly, the linear, more lightweight selector often matches or
exceeds the performance of the attention-based one.

We also perform statistical pairwise t-tests [ 47 ] for nDCG@20 between pipeline ap-
proaches and S�R�LIN and S�R�ATT. We do not observe signi�cant improvements for
C���17 and C���W��09. However, end-to-end models perform signi�cantly better than
PL�BERT and PL�LSTM.

89

5.4 Results

C�������F����

DB������E�����

F����

F�QA

H�����QA

MS MARCO

NQ

����

S��D���

S��F���

TREC�C����

W�����T������2020

0

0.2

0.4

0.6

0.8

1

nD
CG

@
10

BM25 BERT�CLS S�R�LIN (k = 5) S�R�LIN (k = 10)

�0.1

0

0.1 Improvement (k = 5) Improvement (k = 10)

Figure 5.6: Ranking results (nDCG@10) on datasets from the BEIR framework using zero-
shot evaluation with models trained on the MS MARCO dataset. The lines show the dif-
ference between S�R�LIN and BERT�CLS performance. Positive improvement indicates that
S�R�LIN performs better, negative improvement indicates the opposite.
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Figure 5.7: Ranking results (nDCG@10) using S�R�LINwith decreasing number of selected
sentences (k).
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Extractive Explanations for Rankings

Retrieved Document: the san francisco bay area, referred to locally as the 
bay area is a populous region surrounding the san francisco and san pablo 
estuaries in northern california. The region encompasses the major cities 
and metropolitan areas of san jose, san francisco, and Oakland, along with 
smaller urban and rural areas. The bay area's nine counties are ......Santa 
Clara, Solana and Sonoma. The combined statistical area of the region is the 
second largest in california after the Los Angeles area.  

Query: san francisco bay area contains zero towns  
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Learning-to-rank approaches

Explainable Information Retrieval: A Survey 19

X

Explainable Decision Structure

Feature-interaction-based

Prediction

Ex
pl

ai
na

bl
e 

Te
xt

 R
an

ki
ng

Ex
pl

ai
na

bl
e 

Le
ar

ni
ng

-t
o-

ra
nk

ery Document

Rationale-based

Feature Aggregation

Prediction

ery-document Vector

Feature Aggregation

Feature Interaction

Feat. Extraction Feature Extraction

bike theft report stolen bicycle online

bike theft report stolen bicycle online

Prediction

ery Document

Feature Aggregation

Sparse Input Representation

Feat. Extraction Feature Extraction

bike theft stolen
X

bicycle

bike theft report stolen bicycle online

Prediction

ery-document Vector

Feature Aggregation

Feature Extraction

Explicit Feature Contribution

Fig. 9. Types of IBDmodels. Green and gray color refers tomostly interpretable/non-interpretable components,
respectively.

correct baselines and a tightly controlled setup, it might be able to shed light on the question of
What information is learned by training on a speci�c task? or How easily extractable is information
about a concept from the model? [127]. However, it is unclear whether this information is actually
being used by the model at inference time [9]. To resolve this, recent studies borrow ideas from
causality research to understand whether a speci�c concept is utilized during the inference using
counterfactual representations, where the concept is voided [34, 66]. The model is proven to
have used the concept if the counterfactual representations result in worse task performance. In
conclusion, while there has been an in-depth evaluation of the probing paradigm by the NLP and
interpretability community and many improvements have been proposed, little of that found its
way into IR-related probing studies. Future probing studies in IR will need to include learnings and
best practices from established research and use them to evaluate and validate the �ndings for IR
models.

8 EXPLAINABLE-BY-ARCHITECTURE MODELS
We refer to the �rst family of IBD models as explainable-by-architecture models. Those models can
be viewed as amodular framework ofmultiple components (see Figure 9). The general architecture of
these models involves intermediate feature extraction (that might involve feature attributions), and
a task-speci�c decision structure (that might involve feature interactions). Pragmatically speaking,
not all components are fully interpretable to ensure competitive task performance. Therefore, most
of the IBD resort to making only speci�c components interpretable or transparent. In the following,
we look at two major use cases of such models in text ranking and LTR tasks.

Pre-print



31

GAMs
Interpretable Ranking with Generalized Additive Models
Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Alexander Grushetsky, Yonghui Wu,

Petr Mitrichev, Ethan Sterling, Nathan Bell, Walker Ravina, Hai Qian
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ABSTRACT
Interpretability of ranking models is a crucial yet relatively under-
examined research area. Recent progress on this area largely fo-
cuses on generating post-hoc explanations for existing black-box
ranking models. Though promising, such post-hoc methods cannot
provide sufficiently accurate explanations in general [51], which
makes them infeasible in many high-stakes scenarios, especially
the ones with legal or policy constraints. Thus, building an intrinsi-
cally interpretable ranking model with transparent, self-explainable
structure becomes necessary, but this remains less explored in the
learning-to-rank setting.

In this paper, we lay the groundwork for intrinsically inter-
pretable learning-to-rank by introducing generalized additive mod-
els (GAMs) into ranking tasks. Generalized additive models (GAMs)
are intrinsically interpretable machine learning models and have
been extensively studied on regression and classification tasks. We
study how to extend GAMs into ranking models which can handle
both item-level and list-level features and propose a novel formu-
lation of ranking GAMs. To instantiate ranking GAMs, we employ
neural networks instead of traditional splines or regression trees.
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Figure 1: An example of a ranking GAM for local search. For
each input feature 𝑥 𝑗 (e.g. price, distance), a sub-model pro-
duces a sub-score 𝑓𝑗 (𝑥 𝑗 ). Context features (e.g. user device
type) can be utilized to derive importance weights of sub-
models. The ranking score of each item is a weighted sum
of sub-scores. The output is a ranked list of items sorted by
their ranking scores.

1 INTRODUCTION
Learning-to-rank (LTR) [29] has been extensively studied [4, 6, 7, 17,
25, 41, 42, 47, 62] with broad applications in various fields [24, 34].
While many studies focus on building more accurate ranking mod-
els, fewer pay attention to the model interpretability. The lack of
interpretability can lead to many issues in practice, such as difficult
troubleshooting, opacity to potential social bias [26], vulnerability
to data drifting, and high maintenance costs [52]. The latest SWIRL
workshop report [13] lists model transparency as one of the key
issues that the IR community should focus on in the following years.
Hence, there is an emerging need to develop more transparent and
interpretable learning-to-rank models.

There are roughly two categories of techniques to achieve model
interpretability [15]: one aims to generate post-hoc explanations of
an existing black-box model, the other aims to build intrinsically
interpretablemodels where the model structure per se is understand-
able. In the specific application of learning-to-rank, there are a few
recent studies [49, 55, 56, 58] focusing on generating post-hoc ex-
planations for existing models. However, intrinsically interpretable
models specifically designed for learning-to-rank remain less ex-
plored. Tree-based models [6, 17, 25] are often considered more
interpretable than neural models. But the state-of-the-art imple-
mentations of tree-based models, like LambdaMART, often involve
thousands of deep and wide trees, tree ensembles and bagging [5] to
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3 PROBLEM FORMULATION
In this section, we start by defining notations for a learning-to-rank
problem. Then we formalize generalized additive model (GAM) and
propose a novel formulation of ranking GAM.

3.1 Learning to Rank
In a ranking problem, we denote a data set with 𝑁 lists as D =
{(q,X, y)}𝑁1 . For a specific list (q,X, y) ∈ D, q = (𝑞1, · · · ,𝑞𝑚) is a
context feature vector consisting of𝑚 list-level contextual signals
(e.g. query features in search tasks, user information in recommen-
dation tasks); X = {x𝑖 }𝑙𝑖=1 is a set of 𝑙 data items, each represented
by a feature vector x𝑖 ; y = {𝑦𝑖 }𝑙𝑖=1 is a set of relevance labels of
corresponding data items where a higher 𝑦𝑖 ∈ R indicates that the
item x𝑖 is more relevant. Let𝚷𝑙 denote the set of all permutations of
𝑙 data items. The optimal ranking 𝝅∗ ∈ 𝚷𝑙 can always be obtained
by ranking items x𝑖 ’s according to their relevance labels 𝑦𝑖 ’s from
highest to lowest.

The typical learning-to-rank setting aims to learn a ranker 𝜑
from a training data set D𝐿 with given relevance labels, such that
for any list (q,X), the inferred ranking 𝝅̂ = 𝜑 (q,X) can be as close
to the optimal ground-truth ranking 𝝅∗ as possible.

Specifically, in this work, we infer the ranking by scoring each
item individually and sorting them based on their scores. For each
list (q,X) with given context features and item features, we aim to
learn a scoring function 𝐹 which takes both the context features q
and an individual item’s features x𝑖 as input, and output a ranking
score 𝑦𝑖 ∈ R:

𝑦𝑖 = 𝐹 (q, x𝑖 )
The final predicted ranking 𝝅̂ will be generated by ranking all the
items in X based on their inferred ranking scores 𝑦𝑖 ’s. Notice that
scoring each item individually does not mean this is a regression
problem, as the objective is to optimize the ranking performance,
and ranking rather regression losses are employed (see Section 4.3
for further discussion).

It is worth noting that there is not yet a common agreement on
a formal definition of interpretability in learning-to-rank. There-
fore, in this paper, we confine our discussion to the interpretability
guarantees offered by generalized additive models (GAMs). We will
briefly review the formal definition of GAMs, and then propose a
novel ranking GAM definition with similar interpretability.

3.2 GAM
A generalized additive model (GAM) [19, 31] learns a function for
each individual input feature respectively. Previous studies typically
focus on applying generalized additive models on classification or
regression tasks with numerical features. Formally, we denote a data
set as D = {(x𝑖 ,𝑦𝑖 )}𝑁𝑖=1 where each x𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑛) is a feature
vector containing 𝑛 features and 𝑦𝑖 is the target. For a regression
task, 𝑦𝑖 ∈ R is a real value, while for a binary classification task
𝑦𝑖 ∈ {0, 1} is a binary value. A generalized additive model takes a
feature vector x𝑖 and outputs 𝑦𝑖 with the following structure:

𝑔(𝑦𝑖 ) = 𝑓1 (𝑥𝑖1) + 𝑓2 (𝑥𝑖2) + · · · + 𝑓𝑛 (𝑥𝑖𝑛) (1)

Each 𝑓𝑗 (·) is a function to be learned for the 𝑗-th feature. The
function can be instantiated by different classes of functions, such

as linear functions, splines or trees/ensemble of trees [31]. 𝑔(·) is a
link function that links the sum of all 𝑓𝑗 (𝑥𝑖 𝑗 )’s to the model output.
For example, 𝑔(·) could be an identity function for regression tasks,
while for a binary classification task its inverse function 𝑔−1 (·)
could be a logistic function 𝑔−1 (𝑢) = 1

1+exp(−𝑢) .
The model does not involve any interactions between features,

which could lead to compromise in performance. However, the
simple structure also introducesmany appealing benefits in practice.
Since each 𝑓𝑗 (·) is essentially a univariate function, the relationship
between a feature’s value and the final response can be accurately
quantified and visualized by plotting 𝑓𝑗 (·). This transparency is
required in high-stake applications in domains such as legal or
medical, where black-box models cannot be deployed [31, 51].

3.3 Ranking GAM
Traditional GAMs are designed for classification and regression
problems. There are no systematic studies to develop GAMs for
ranking problems. In this subsection, we define ranking GAMs,
which are designed to tackle the special structure of ranking prob-
lems while maintaining intelligibility of traditional GAMs.
Context-absent ranking. We start our discussion by the context-
absent ranking scenario, where the list-level context features q are
not available. In this scenario, a ranking GAM essentially applies a
traditional GAM for regression on each item x𝑖 in the listX as a scor-
ing function. Given each item’s representation x𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑛),
the ranking score 𝑦𝑖 can be derived by:

𝑦𝑖 = 𝐹 (x𝑖 ) = 𝑓1 (𝑥𝑖1) + 𝑓2 (𝑥𝑖2) + · · · + 𝑓𝑛 (𝑥𝑖𝑛) (2)

Note that the item-level features can be context-dependent. For
example, the BM25 scores are item-level features but depend on
both queries (contexts) and documents (items).

However, not all context features can be effectively projected to
item-level features, e.g., the time of day when a query is sent in
search tasks (like 9 a.m. or 9 p.m.). In this case, the context-absent
ranking formalization is not compatible with such a context feature.
Context-present ranking. Now we discuss the definition of our
ranking GAM in the context-present scenario where list-level con-
text features q = (𝑞1, · · · ,𝑞𝑚) are available. A straightforward
solution would be to project context features q as item-level fea-
tures and apply a traditional GAM as an item scoring function like
in the context-absent setting:

𝑦𝑖 = 𝐹 (q, x𝑖 ) = 𝑓1 (𝑥𝑖1) + 𝑓2 (𝑥𝑖2) + · · · + 𝑓𝑛 (𝑥𝑖𝑛)
+ 𝑓𝑛+1 (𝑞1) + 𝑓𝑛+2 (𝑞2) + · · · + 𝑓𝑛+𝑚 (𝑞𝑚) (3)

Unfortunately, this model structure cannot fully leverage the signals
from context features in learning-to-rank scenarios. On one hand,
most ranking losses used for training only involve the differences
of predicted ranking scores (𝑦𝑖 − 𝑦𝑖′) between items. Obviously,
the sub-model terms of context features 𝑓𝑛+𝑘 (𝑞𝑘 ) will be canceled
out as all items within the same list share the same context feature
values. On the other hand, most ranking metrics only care about the
order of items 𝝅̂ , which is not related to context feature sub-model
terms 𝑓𝑛+𝑘 (𝑞𝑘 ) either.

In order to leverage context features for a GAM model, we pro-
pose the following ranking GAM model that utilizes context fea-
tures to derive importance weights when combining item-level
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out as all items within the same list share the same context feature
values. On the other hand, most ranking metrics only care about the
order of items 𝝅̂ , which is not related to context feature sub-model
terms 𝑓𝑛+𝑘 (𝑞𝑘 ) either.

In order to leverage context features for a GAM model, we pro-
pose the following ranking GAM model that utilizes context fea-
tures to derive importance weights when combining item-level
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Figure 3: A graphical illustration of a context-present neural
ranking GAM.

We denote the overall weighting vector as 𝜶 ∈ R𝑛 . We obtain 𝜶
by taking the sum of weighting vectors 𝜶𝑘 from all the𝑚 context
features as 𝜶 =

∑𝑚
𝑘=1 𝜶𝑘 . The final ranking score is generated

by taking the weighted sum of sub-model 𝑓𝑗 (𝑥 𝑗 )’s as described in
Equation (5), where the weight of the 𝑗-th item feature𝑤 𝑗 (q) equals
to 𝜶 ( 𝑗) , i.e. the 𝑗-th dimension of the overall weighting vector.

4.3 Remarks
Ranking losses. Both neural ranking GAMs can be trained with
any ranking loss functions. In this work, we train our model with
approximate NDCG loss from [3, 46]. It is worth noting that regres-
sion losses such as Mean Squared Error (MSE) L(y, ŷ) = | |y − ŷ| |2
can be also used as loss functions for ranking. We will compare
traditional GAMs optimizing regression loss with the proposed
ranking GAMs in our experiments.
Non-numerical features. Another advantage of adopting neural
networks is the flexibility to handle non-numerical features such
as categorical or textual features, since handling such features in
traditional GAM instantiated by splines or trees is non-trivial. Such
features can be seamlessly incorporated into GAMs instantiated by
neural networks by deriving embedding vectors. Notice that the
introduction of embedding will not affect the final visualization of
sub-models for non-numerical features.

5 SUB-MODEL DISTILLATION
Model distillation [20] is a widely-adopted technique to simplify
deep neural networks. The general idea is to train a smaller, simpler
model by minimizing the loss between its output and that of a
more larger, complex model. Given the special architecture of our
proposed neural GAM model, we propose to distill each sub-model
individually. The benefit of sub-model distillation is multi-fold: the
distilled sub-models can be faster to perform inference; they are
also smaller in size which is beneficial for on-device deployment;
they could potentially be more interpretable due to their simpler
structure. We focus on distilling sub-models of numerical features
where we utilize piece-wise regression (also known as segmented
regression) [37].

5.1 Piece-wise Regression
We are given a numerical feature 𝑥 and its sub-model 𝑓 (𝑥) learned
in a GAM. The goal of piece-wise regression is to find a piece-
wise linear function (PWL) that is as close to 𝑓 (𝑥) as possible.
A PWL function can be described by a set of 𝐾 knots, denoted as
𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 where𝑥𝑘 ’s in the knots are ordered, i.e.𝑥𝑘 < 𝑥𝑘+1.
The definition of PWL function based on the knots 𝑆 is:

𝑃𝑊𝐿𝑆 (𝑥) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑦1 if 𝑥 < 𝑥1,
𝑦𝑘+1−𝑦𝑘
𝑥𝑘+1−𝑥𝑘 (𝑥 − 𝑥𝑘 ) + 𝑦𝑘 if 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1,
𝑦𝐾 if 𝑥 > 𝑥𝐾 .

𝑃𝑊𝐿𝑆 (𝑥) is a linear function between any two adjacent knots and
becomes flat at two ends. Thus, the 𝐾 knots uniquely determine the
PWL function. For the practice of sub-model distillation, a small 𝐾
(e.g. around 3 to 5) is usually sufficient.

Formally, the goal of piece-wise regression is to find the set of
optimal knots 𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 that minimize the empirical loss
on a training data set D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}𝑁𝑖=1. In particular, we use
the Mean Squared Error (MSE) as our loss function and have the
following optimization problem:

𝑆∗ = argmin
𝑆={(𝑥𝑘 ,𝑦𝑘 ) }𝐾𝑘=1

1
|D|

∑
D

''𝑓 (𝑥𝑖 ) − 𝑃𝑊𝐿𝑆 (𝑥𝑖 )
''2 (9)

Note that knots 𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 are not necessarily a subset of
the training data D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}𝑁𝑖=1.

Such a formulation can be solved by piece-wise regression pack-
ages such as [38]. However, they are usually slow and not scalable to
large data sets. In the next section, we propose a greedy algorithm.

5.2 Fitting Algorithm
The major challenge of our fitting algorithm is to determine the
𝑥𝑘 ’s for the 𝐾 knots: {𝑥𝑘 }𝐾𝑘=1. With 𝑥𝑘 ’s determined, the optimal
𝑦𝑘 ’s can be computed by a method similar to least squares, which
we will not elaborate in this paper due to limited space.

Our method first generates a set of 𝑥 ’s as knot candidates 𝑃 .
Given all 𝑥 ’s in the training data D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}, we construct 𝑃
by a heuristic using percentile boundary of 0%, 1%, . . . , 99%, 100%
of D, resulting in at most 101 elements in 𝑃 .

With a given set of candidate knots 𝑃 , our problem becomes a
combinatorial optimization one, where one needs to find a subset
𝑆 ⊂ 𝑃 with size 𝐾 that minimizes the loss in Equation (9). We
denote the loss as L(𝑆). A brute-force algorithm is to enumerate
all the possible subset of 𝑃 with size 𝐾 , but the computational cost
is intractable. Thus, we propose a greedy algorithm in Algorithm 1.
The algorithm first constructs an initial set of knots in a greedy
fashion and then refines it until convergence. More specifically,

• Knots Initialization. The algorithm greedily constructs an
initial set 𝑆 of size 𝐾 by adding 𝑥 ’s iteratively from 𝑃 (See
Line 1-5). In each step, the 𝑥∗ that best minimizes the loss is
added into the 𝑆 . It stops once we have 𝐾 knots.

• Knots Refinement. The algorithm iterates over each knot in
𝑆 and tries to assess whether it can be replaced by another
candidate knot to further minimize the loss (See Line 6-13).
The procedure stops when there is no improvement after we
loop over all 𝑥𝑘 ∈ 𝑆 once.
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Figure 3: A graphical illustration of a context-present neural
ranking GAM.

We denote the overall weighting vector as 𝜶 ∈ R𝑛 . We obtain 𝜶
by taking the sum of weighting vectors 𝜶𝑘 from all the𝑚 context
features as 𝜶 =

∑𝑚
𝑘=1 𝜶𝑘 . The final ranking score is generated

by taking the weighted sum of sub-model 𝑓𝑗 (𝑥 𝑗 )’s as described in
Equation (5), where the weight of the 𝑗-th item feature𝑤 𝑗 (q) equals
to 𝜶 ( 𝑗) , i.e. the 𝑗-th dimension of the overall weighting vector.

4.3 Remarks
Ranking losses. Both neural ranking GAMs can be trained with
any ranking loss functions. In this work, we train our model with
approximate NDCG loss from [3, 46]. It is worth noting that regres-
sion losses such as Mean Squared Error (MSE) L(y, ŷ) = | |y − ŷ| |2
can be also used as loss functions for ranking. We will compare
traditional GAMs optimizing regression loss with the proposed
ranking GAMs in our experiments.
Non-numerical features. Another advantage of adopting neural
networks is the flexibility to handle non-numerical features such
as categorical or textual features, since handling such features in
traditional GAM instantiated by splines or trees is non-trivial. Such
features can be seamlessly incorporated into GAMs instantiated by
neural networks by deriving embedding vectors. Notice that the
introduction of embedding will not affect the final visualization of
sub-models for non-numerical features.

5 SUB-MODEL DISTILLATION
Model distillation [20] is a widely-adopted technique to simplify
deep neural networks. The general idea is to train a smaller, simpler
model by minimizing the loss between its output and that of a
more larger, complex model. Given the special architecture of our
proposed neural GAM model, we propose to distill each sub-model
individually. The benefit of sub-model distillation is multi-fold: the
distilled sub-models can be faster to perform inference; they are
also smaller in size which is beneficial for on-device deployment;
they could potentially be more interpretable due to their simpler
structure. We focus on distilling sub-models of numerical features
where we utilize piece-wise regression (also known as segmented
regression) [37].

5.1 Piece-wise Regression
We are given a numerical feature 𝑥 and its sub-model 𝑓 (𝑥) learned
in a GAM. The goal of piece-wise regression is to find a piece-
wise linear function (PWL) that is as close to 𝑓 (𝑥) as possible.
A PWL function can be described by a set of 𝐾 knots, denoted as
𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 where𝑥𝑘 ’s in the knots are ordered, i.e.𝑥𝑘 < 𝑥𝑘+1.
The definition of PWL function based on the knots 𝑆 is:

𝑃𝑊𝐿𝑆 (𝑥) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑦1 if 𝑥 < 𝑥1,
𝑦𝑘+1−𝑦𝑘
𝑥𝑘+1−𝑥𝑘 (𝑥 − 𝑥𝑘 ) + 𝑦𝑘 if 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1,
𝑦𝐾 if 𝑥 > 𝑥𝐾 .

𝑃𝑊𝐿𝑆 (𝑥) is a linear function between any two adjacent knots and
becomes flat at two ends. Thus, the 𝐾 knots uniquely determine the
PWL function. For the practice of sub-model distillation, a small 𝐾
(e.g. around 3 to 5) is usually sufficient.

Formally, the goal of piece-wise regression is to find the set of
optimal knots 𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 that minimize the empirical loss
on a training data set D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}𝑁𝑖=1. In particular, we use
the Mean Squared Error (MSE) as our loss function and have the
following optimization problem:

𝑆∗ = argmin
𝑆={(𝑥𝑘 ,𝑦𝑘 ) }𝐾𝑘=1

1
|D|

∑
D

''𝑓 (𝑥𝑖 ) − 𝑃𝑊𝐿𝑆 (𝑥𝑖 )
''2 (9)

Note that knots 𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 are not necessarily a subset of
the training data D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}𝑁𝑖=1.

Such a formulation can be solved by piece-wise regression pack-
ages such as [38]. However, they are usually slow and not scalable to
large data sets. In the next section, we propose a greedy algorithm.

5.2 Fitting Algorithm
The major challenge of our fitting algorithm is to determine the
𝑥𝑘 ’s for the 𝐾 knots: {𝑥𝑘 }𝐾𝑘=1. With 𝑥𝑘 ’s determined, the optimal
𝑦𝑘 ’s can be computed by a method similar to least squares, which
we will not elaborate in this paper due to limited space.

Our method first generates a set of 𝑥 ’s as knot candidates 𝑃 .
Given all 𝑥 ’s in the training data D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}, we construct 𝑃
by a heuristic using percentile boundary of 0%, 1%, . . . , 99%, 100%
of D, resulting in at most 101 elements in 𝑃 .

With a given set of candidate knots 𝑃 , our problem becomes a
combinatorial optimization one, where one needs to find a subset
𝑆 ⊂ 𝑃 with size 𝐾 that minimizes the loss in Equation (9). We
denote the loss as L(𝑆). A brute-force algorithm is to enumerate
all the possible subset of 𝑃 with size 𝐾 , but the computational cost
is intractable. Thus, we propose a greedy algorithm in Algorithm 1.
The algorithm first constructs an initial set of knots in a greedy
fashion and then refines it until convergence. More specifically,

• Knots Initialization. The algorithm greedily constructs an
initial set 𝑆 of size 𝐾 by adding 𝑥 ’s iteratively from 𝑃 (See
Line 1-5). In each step, the 𝑥∗ that best minimizes the loss is
added into the 𝑆 . It stops once we have 𝐾 knots.

• Knots Refinement. The algorithm iterates over each knot in
𝑆 and tries to assess whether it can be replaced by another
candidate knot to further minimize the loss (See Line 6-13).
The procedure stops when there is no improvement after we
loop over all 𝑥𝑘 ∈ 𝑆 once.
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Figure 3: A graphical illustration of a context-present neural
ranking GAM.

We denote the overall weighting vector as 𝜶 ∈ R𝑛 . We obtain 𝜶
by taking the sum of weighting vectors 𝜶𝑘 from all the𝑚 context
features as 𝜶 =

∑𝑚
𝑘=1 𝜶𝑘 . The final ranking score is generated

by taking the weighted sum of sub-model 𝑓𝑗 (𝑥 𝑗 )’s as described in
Equation (5), where the weight of the 𝑗-th item feature𝑤 𝑗 (q) equals
to 𝜶 ( 𝑗) , i.e. the 𝑗-th dimension of the overall weighting vector.

4.3 Remarks
Ranking losses. Both neural ranking GAMs can be trained with
any ranking loss functions. In this work, we train our model with
approximate NDCG loss from [3, 46]. It is worth noting that regres-
sion losses such as Mean Squared Error (MSE) L(y, ŷ) = | |y − ŷ| |2
can be also used as loss functions for ranking. We will compare
traditional GAMs optimizing regression loss with the proposed
ranking GAMs in our experiments.
Non-numerical features. Another advantage of adopting neural
networks is the flexibility to handle non-numerical features such
as categorical or textual features, since handling such features in
traditional GAM instantiated by splines or trees is non-trivial. Such
features can be seamlessly incorporated into GAMs instantiated by
neural networks by deriving embedding vectors. Notice that the
introduction of embedding will not affect the final visualization of
sub-models for non-numerical features.

5 SUB-MODEL DISTILLATION
Model distillation [20] is a widely-adopted technique to simplify
deep neural networks. The general idea is to train a smaller, simpler
model by minimizing the loss between its output and that of a
more larger, complex model. Given the special architecture of our
proposed neural GAM model, we propose to distill each sub-model
individually. The benefit of sub-model distillation is multi-fold: the
distilled sub-models can be faster to perform inference; they are
also smaller in size which is beneficial for on-device deployment;
they could potentially be more interpretable due to their simpler
structure. We focus on distilling sub-models of numerical features
where we utilize piece-wise regression (also known as segmented
regression) [37].

5.1 Piece-wise Regression
We are given a numerical feature 𝑥 and its sub-model 𝑓 (𝑥) learned
in a GAM. The goal of piece-wise regression is to find a piece-
wise linear function (PWL) that is as close to 𝑓 (𝑥) as possible.
A PWL function can be described by a set of 𝐾 knots, denoted as
𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 where𝑥𝑘 ’s in the knots are ordered, i.e.𝑥𝑘 < 𝑥𝑘+1.
The definition of PWL function based on the knots 𝑆 is:

𝑃𝑊𝐿𝑆 (𝑥) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑦1 if 𝑥 < 𝑥1,
𝑦𝑘+1−𝑦𝑘
𝑥𝑘+1−𝑥𝑘 (𝑥 − 𝑥𝑘 ) + 𝑦𝑘 if 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1,
𝑦𝐾 if 𝑥 > 𝑥𝐾 .

𝑃𝑊𝐿𝑆 (𝑥) is a linear function between any two adjacent knots and
becomes flat at two ends. Thus, the 𝐾 knots uniquely determine the
PWL function. For the practice of sub-model distillation, a small 𝐾
(e.g. around 3 to 5) is usually sufficient.

Formally, the goal of piece-wise regression is to find the set of
optimal knots 𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 that minimize the empirical loss
on a training data set D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}𝑁𝑖=1. In particular, we use
the Mean Squared Error (MSE) as our loss function and have the
following optimization problem:

𝑆∗ = argmin
𝑆={(𝑥𝑘 ,𝑦𝑘 ) }𝐾𝑘=1

1
|D|

∑
D

''𝑓 (𝑥𝑖 ) − 𝑃𝑊𝐿𝑆 (𝑥𝑖 )
''2 (9)

Note that knots 𝑆 = {(𝑥𝑘 ,𝑦𝑘 )}𝐾𝑘=1 are not necessarily a subset of
the training data D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}𝑁𝑖=1.

Such a formulation can be solved by piece-wise regression pack-
ages such as [38]. However, they are usually slow and not scalable to
large data sets. In the next section, we propose a greedy algorithm.

5.2 Fitting Algorithm
The major challenge of our fitting algorithm is to determine the
𝑥𝑘 ’s for the 𝐾 knots: {𝑥𝑘 }𝐾𝑘=1. With 𝑥𝑘 ’s determined, the optimal
𝑦𝑘 ’s can be computed by a method similar to least squares, which
we will not elaborate in this paper due to limited space.

Our method first generates a set of 𝑥 ’s as knot candidates 𝑃 .
Given all 𝑥 ’s in the training data D = {(𝑥𝑖 , 𝑓 (𝑥𝑖 )}, we construct 𝑃
by a heuristic using percentile boundary of 0%, 1%, . . . , 99%, 100%
of D, resulting in at most 101 elements in 𝑃 .

With a given set of candidate knots 𝑃 , our problem becomes a
combinatorial optimization one, where one needs to find a subset
𝑆 ⊂ 𝑃 with size 𝐾 that minimizes the loss in Equation (9). We
denote the loss as L(𝑆). A brute-force algorithm is to enumerate
all the possible subset of 𝑃 with size 𝐾 , but the computational cost
is intractable. Thus, we propose a greedy algorithm in Algorithm 1.
The algorithm first constructs an initial set of knots in a greedy
fashion and then refines it until convergence. More specifically,

• Knots Initialization. The algorithm greedily constructs an
initial set 𝑆 of size 𝐾 by adding 𝑥 ’s iteratively from 𝑃 (See
Line 1-5). In each step, the 𝑥∗ that best minimizes the loss is
added into the 𝑆 . It stops once we have 𝐾 knots.

• Knots Refinement. The algorithm iterates over each knot in
𝑆 and tries to assess whether it can be replaced by another
candidate knot to further minimize the loss (See Line 6-13).
The procedure stops when there is no improvement after we
loop over all 𝑥𝑘 ∈ 𝑆 once.
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features. Specifically, the predicted ranking score of each item is:

𝑦𝑖 = 𝐹 (q, x𝑖 ) =
𝑛∑
𝑗=1

𝑚∑
𝑘=1

𝑤 𝑗,𝑘 (𝑞𝑘 ) 𝑓𝑗 (𝑥𝑖 𝑗 ) (4)

where both 𝑓𝑗 (·) and𝑤 𝑗,𝑘 (·) are arbitrary univariate functions to
be learned. It is worth noting that when the context features q are
fixed, the predicted ranking score can still be decomposed as sum
of functions of each item-level feature:

𝑦𝑖 = 𝐹 (q, x𝑖 ) =
𝑛∑
𝑗=1

(
𝑤 𝑗 (q) 𝑓𝑗 (𝑥𝑖 𝑗 )

)
(5)

where𝑤 𝑗 (q) =
∑𝑚
𝑘=1𝑤 𝑗,𝑘 (𝑞𝑘 ) can be interpreted as the importance

weight of the 𝑗-th item feature derived from all the context features.
For example, in a search task, item features like distance might be
more important if users are searching for hotels, while the content
relevance might be more important if users are searching for a
convention center. And notice that the weight function 𝑤 𝑗 (q) is
also an additive model with regard to each context feature.

4 NEURAL RANKING GAM
In this section, we propose our method that instantiates ranking
GAM based on neural networks.

4.1 Context-Absent Neural Ranking GAM
We start with the context-absent scenario, where a ranking data
set can be represented as D = {(X, y)}𝑁1 as the context features q
are not available. We will build a scoring function that predicts the
ranking score 𝑦𝑖 for each data item x𝑖 in each list X.

For simplicity, we focus on a single data item in a list and omit the
subscripts. A data item can be represented as x = (𝑥1, 𝑥2, · · · , 𝑥𝑛)
where 𝑥 𝑗 represents the 𝑗-th feature of the data item x.

We build a standalone neural network for each feature 𝑥𝑖 which
outputs a single “sub-score” 𝑠𝑖 ∈ R. This leads to 𝑛 separate neural
networks in total. In principle, users have the flexibility to construct
any neural network structure with legitimate input and output.
One can even build a different network structure for each feature
according to its characteristics.

In our practice, we simply adopt a feed-forward network struc-
ture with 𝐿 hidden layers for each feature as shown in Figure 2.
Specifically, for each item feature 𝑥 𝑗 , we can have

z𝑗1 = 𝜎 (W𝑗1𝑥 𝑗 + b𝑗1)
z𝑗2 = 𝜎 (W𝑗2z𝑗1 + b𝑗2)
. . .

z𝑗𝐻 = 𝜎 (W𝑗𝐻 z𝑗 (𝐻−1) + b𝑗𝐻 )
where zℎ is the output of the ℎ-th hidden layer; W𝑗ℎ and b𝑗ℎ are
weight matrix and bias vector of the ℎ-th hidden layer to be trained;
𝜎 (·) is the non-linear activation function. We choose the Rectifier
(ReLU) [39] as the activation function.

The sub-score of feature 𝑥 𝑗 can be obtained by feeding the output
of the final hidden layer into a dense layer:

𝑓𝑗 (𝑥 𝑗 ) = 𝑠 𝑗 = W𝑗 z𝑗𝐻 + 𝑏 𝑗 (6)

Based on the 𝑛 neural networks we build for all the 𝑛 features,
we can obtain the final predicted score for item x by simply taking
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Figure 2: A graphical illustration of a context-absent neural
ranking GAM.
the sum of all the sub-scores:

𝑦 = 𝐹 (x) =
∑
𝑗

𝑓𝑗 (𝑥 𝑗 ) =
∑
𝑗

𝑠 𝑗 (7)

The final predicted ranking 𝝅̂ can be obtained by sorting all the
items x’s in the list according to their predicted ranking scores.

4.2 Context-Present Neural Ranking GAM
In this subsection, we describe the neural network instantiation
of the context-present ranking GAM where context features q of
each list are available. In this design, the module for item features
remains similar to the context-absent setting.We build an additional
neural additive module for context features q which outputs an
importance weights vector for item feature sub-models instead of a
score.

We again focus on the scoring of a single data item and tem-
porarily omit the subscripts. Specifically, an item in list X is de-
noted as x = (𝑥1, · · · , 𝑥𝑛), and the context features are denoted
as q = (𝑞1, · · · ,𝑞𝑚). The sub-score 𝑓𝑗 (𝑥 𝑗 ) for each item feature
𝑥 𝑗 is instantiated in the same way (Equation (6)) as the context-
absent model. From each individual context feature 𝑞𝑘 , we derive
an 𝑛-dimensional weighting vector 𝜶𝑘 . As shown in Figure 3, the
weighting vector can be obtained by a 𝑇 -layer feed-forward neural
network structure, where

z𝑘1 = 𝜎 (W𝑘1𝑞𝑘 + b𝑘1)
z𝑘2 = 𝜎 (W𝑘2z𝑘1 + b𝑘2)
. . .

z𝑘𝑇 = 𝜎 (W𝑘𝑇 z𝑘 (𝑇−1) + b𝑘𝑇 )
Similarly, z𝑘𝑡 ’s are hidden layer outputs, and W𝑘𝑡 , b𝑘𝑡 are model
parameters to be learned. Then we use a softmax layer on top of
the final dense layer to derive 𝜶𝑘 .

𝜶𝑘 = softmax(W𝑘z𝑘𝑇 ) (8)

where the 𝑗-th dimension of the weighting vector 𝜶 ( 𝑗)
𝑘

indicates
the importance of the 𝑗-th item feature in x considering the 𝑘-
th context feature. Notice that 𝜶 ( 𝑗)

𝑘
exactly corresponds to the

value of function𝑤 𝑗,𝑘 (𝑞𝑘 ) in Equation (4). The intuition of using
a softmax layer is to prevent the derived importance weights to
be negative or to be extremely large on some item features, which
would substantially compromise the model interpretability.
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features. Specifically, the predicted ranking score of each item is:

𝑦𝑖 = 𝐹 (q, x𝑖 ) =
𝑛∑
𝑗=1

𝑚∑
𝑘=1

𝑤 𝑗,𝑘 (𝑞𝑘 ) 𝑓𝑗 (𝑥𝑖 𝑗 ) (4)

where both 𝑓𝑗 (·) and𝑤 𝑗,𝑘 (·) are arbitrary univariate functions to
be learned. It is worth noting that when the context features q are
fixed, the predicted ranking score can still be decomposed as sum
of functions of each item-level feature:

𝑦𝑖 = 𝐹 (q, x𝑖 ) =
𝑛∑
𝑗=1

(
𝑤 𝑗 (q) 𝑓𝑗 (𝑥𝑖 𝑗 )

)
(5)

where𝑤 𝑗 (q) =
∑𝑚
𝑘=1𝑤 𝑗,𝑘 (𝑞𝑘 ) can be interpreted as the importance

weight of the 𝑗-th item feature derived from all the context features.
For example, in a search task, item features like distance might be
more important if users are searching for hotels, while the content
relevance might be more important if users are searching for a
convention center. And notice that the weight function 𝑤 𝑗 (q) is
also an additive model with regard to each context feature.

4 NEURAL RANKING GAM
In this section, we propose our method that instantiates ranking
GAM based on neural networks.

4.1 Context-Absent Neural Ranking GAM
We start with the context-absent scenario, where a ranking data
set can be represented as D = {(X, y)}𝑁1 as the context features q
are not available. We will build a scoring function that predicts the
ranking score 𝑦𝑖 for each data item x𝑖 in each list X.

For simplicity, we focus on a single data item in a list and omit the
subscripts. A data item can be represented as x = (𝑥1, 𝑥2, · · · , 𝑥𝑛)
where 𝑥 𝑗 represents the 𝑗-th feature of the data item x.

We build a standalone neural network for each feature 𝑥𝑖 which
outputs a single “sub-score” 𝑠𝑖 ∈ R. This leads to 𝑛 separate neural
networks in total. In principle, users have the flexibility to construct
any neural network structure with legitimate input and output.
One can even build a different network structure for each feature
according to its characteristics.

In our practice, we simply adopt a feed-forward network struc-
ture with 𝐿 hidden layers for each feature as shown in Figure 2.
Specifically, for each item feature 𝑥 𝑗 , we can have

z𝑗1 = 𝜎 (W𝑗1𝑥 𝑗 + b𝑗1)
z𝑗2 = 𝜎 (W𝑗2z𝑗1 + b𝑗2)
. . .

z𝑗𝐻 = 𝜎 (W𝑗𝐻 z𝑗 (𝐻−1) + b𝑗𝐻 )
where zℎ is the output of the ℎ-th hidden layer; W𝑗ℎ and b𝑗ℎ are
weight matrix and bias vector of the ℎ-th hidden layer to be trained;
𝜎 (·) is the non-linear activation function. We choose the Rectifier
(ReLU) [39] as the activation function.

The sub-score of feature 𝑥 𝑗 can be obtained by feeding the output
of the final hidden layer into a dense layer:

𝑓𝑗 (𝑥 𝑗 ) = 𝑠 𝑗 = W𝑗 z𝑗𝐻 + 𝑏 𝑗 (6)

Based on the 𝑛 neural networks we build for all the 𝑛 features,
we can obtain the final predicted score for item x by simply taking
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Figure 2: A graphical illustration of a context-absent neural
ranking GAM.
the sum of all the sub-scores:

𝑦 = 𝐹 (x) =
∑
𝑗

𝑓𝑗 (𝑥 𝑗 ) =
∑
𝑗

𝑠 𝑗 (7)

The final predicted ranking 𝝅̂ can be obtained by sorting all the
items x’s in the list according to their predicted ranking scores.

4.2 Context-Present Neural Ranking GAM
In this subsection, we describe the neural network instantiation
of the context-present ranking GAM where context features q of
each list are available. In this design, the module for item features
remains similar to the context-absent setting.We build an additional
neural additive module for context features q which outputs an
importance weights vector for item feature sub-models instead of a
score.

We again focus on the scoring of a single data item and tem-
porarily omit the subscripts. Specifically, an item in list X is de-
noted as x = (𝑥1, · · · , 𝑥𝑛), and the context features are denoted
as q = (𝑞1, · · · ,𝑞𝑚). The sub-score 𝑓𝑗 (𝑥 𝑗 ) for each item feature
𝑥 𝑗 is instantiated in the same way (Equation (6)) as the context-
absent model. From each individual context feature 𝑞𝑘 , we derive
an 𝑛-dimensional weighting vector 𝜶𝑘 . As shown in Figure 3, the
weighting vector can be obtained by a 𝑇 -layer feed-forward neural
network structure, where

z𝑘1 = 𝜎 (W𝑘1𝑞𝑘 + b𝑘1)
z𝑘2 = 𝜎 (W𝑘2z𝑘1 + b𝑘2)
. . .

z𝑘𝑇 = 𝜎 (W𝑘𝑇 z𝑘 (𝑇−1) + b𝑘𝑇 )
Similarly, z𝑘𝑡 ’s are hidden layer outputs, and W𝑘𝑡 , b𝑘𝑡 are model
parameters to be learned. Then we use a softmax layer on top of
the final dense layer to derive 𝜶𝑘 .

𝜶𝑘 = softmax(W𝑘z𝑘𝑇 ) (8)

where the 𝑗-th dimension of the weighting vector 𝜶 ( 𝑗)
𝑘

indicates
the importance of the 𝑗-th item feature in x considering the 𝑘-
th context feature. Notice that 𝜶 ( 𝑗)

𝑘
exactly corresponds to the

value of function𝑤 𝑗,𝑘 (𝑞𝑘 ) in Equation (4). The intuition of using
a softmax layer is to prevent the derived importance weights to
be negative or to be extremely large on some item features, which
would substantially compromise the model interpretability.
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features. Specifically, the predicted ranking score of each item is:
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where both 𝑓𝑗 (·) and𝑤 𝑗,𝑘 (·) are arbitrary univariate functions to
be learned. It is worth noting that when the context features q are
fixed, the predicted ranking score can still be decomposed as sum
of functions of each item-level feature:
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𝑘=1𝑤 𝑗,𝑘 (𝑞𝑘 ) can be interpreted as the importance

weight of the 𝑗-th item feature derived from all the context features.
For example, in a search task, item features like distance might be
more important if users are searching for hotels, while the content
relevance might be more important if users are searching for a
convention center. And notice that the weight function 𝑤 𝑗 (q) is
also an additive model with regard to each context feature.

4 NEURAL RANKING GAM
In this section, we propose our method that instantiates ranking
GAM based on neural networks.

4.1 Context-Absent Neural Ranking GAM
We start with the context-absent scenario, where a ranking data
set can be represented as D = {(X, y)}𝑁1 as the context features q
are not available. We will build a scoring function that predicts the
ranking score 𝑦𝑖 for each data item x𝑖 in each list X.

For simplicity, we focus on a single data item in a list and omit the
subscripts. A data item can be represented as x = (𝑥1, 𝑥2, · · · , 𝑥𝑛)
where 𝑥 𝑗 represents the 𝑗-th feature of the data item x.

We build a standalone neural network for each feature 𝑥𝑖 which
outputs a single “sub-score” 𝑠𝑖 ∈ R. This leads to 𝑛 separate neural
networks in total. In principle, users have the flexibility to construct
any neural network structure with legitimate input and output.
One can even build a different network structure for each feature
according to its characteristics.

In our practice, we simply adopt a feed-forward network struc-
ture with 𝐿 hidden layers for each feature as shown in Figure 2.
Specifically, for each item feature 𝑥 𝑗 , we can have

z𝑗1 = 𝜎 (W𝑗1𝑥 𝑗 + b𝑗1)
z𝑗2 = 𝜎 (W𝑗2z𝑗1 + b𝑗2)
. . .

z𝑗𝐻 = 𝜎 (W𝑗𝐻 z𝑗 (𝐻−1) + b𝑗𝐻 )
where zℎ is the output of the ℎ-th hidden layer; W𝑗ℎ and b𝑗ℎ are
weight matrix and bias vector of the ℎ-th hidden layer to be trained;
𝜎 (·) is the non-linear activation function. We choose the Rectifier
(ReLU) [39] as the activation function.

The sub-score of feature 𝑥 𝑗 can be obtained by feeding the output
of the final hidden layer into a dense layer:

𝑓𝑗 (𝑥 𝑗 ) = 𝑠 𝑗 = W𝑗 z𝑗𝐻 + 𝑏 𝑗 (6)

Based on the 𝑛 neural networks we build for all the 𝑛 features,
we can obtain the final predicted score for item x by simply taking
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Figure 2: A graphical illustration of a context-absent neural
ranking GAM.
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The final predicted ranking 𝝅̂ can be obtained by sorting all the
items x’s in the list according to their predicted ranking scores.

4.2 Context-Present Neural Ranking GAM
In this subsection, we describe the neural network instantiation
of the context-present ranking GAM where context features q of
each list are available. In this design, the module for item features
remains similar to the context-absent setting.We build an additional
neural additive module for context features q which outputs an
importance weights vector for item feature sub-models instead of a
score.

We again focus on the scoring of a single data item and tem-
porarily omit the subscripts. Specifically, an item in list X is de-
noted as x = (𝑥1, · · · , 𝑥𝑛), and the context features are denoted
as q = (𝑞1, · · · ,𝑞𝑚). The sub-score 𝑓𝑗 (𝑥 𝑗 ) for each item feature
𝑥 𝑗 is instantiated in the same way (Equation (6)) as the context-
absent model. From each individual context feature 𝑞𝑘 , we derive
an 𝑛-dimensional weighting vector 𝜶𝑘 . As shown in Figure 3, the
weighting vector can be obtained by a 𝑇 -layer feed-forward neural
network structure, where

z𝑘1 = 𝜎 (W𝑘1𝑞𝑘 + b𝑘1)
z𝑘2 = 𝜎 (W𝑘2z𝑘1 + b𝑘2)
. . .

z𝑘𝑇 = 𝜎 (W𝑘𝑇 z𝑘 (𝑇−1) + b𝑘𝑇 )
Similarly, z𝑘𝑡 ’s are hidden layer outputs, and W𝑘𝑡 , b𝑘𝑡 are model
parameters to be learned. Then we use a softmax layer on top of
the final dense layer to derive 𝜶𝑘 .

𝜶𝑘 = softmax(W𝑘z𝑘𝑇 ) (8)

where the 𝑗-th dimension of the weighting vector 𝜶 ( 𝑗)
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indicates
the importance of the 𝑗-th item feature in x considering the 𝑘-
th context feature. Notice that 𝜶 ( 𝑗)

𝑘
exactly corresponds to the

value of function𝑤 𝑗,𝑘 (𝑞𝑘 ) in Equation (4). The intuition of using
a softmax layer is to prevent the derived importance weights to
be negative or to be extremely large on some item features, which
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ILMART
Problem in GAMs : No interaction between features

Even though post-hoc explanations can be seen as a viable way to
inspect and audit accurate ranking models, they can produce expla-
nations that are not faithful to internal computations of the model,
and thus they can be misleading [16]. For this reason, Zhuang et al.
pioneer the problem of developing intrinsically-interpretable rank-
ing models [20]. In detail, they propose Neural RankGAM, an adap-
tation of GAM [6] to the ranking task. Although Neural RankGAM
nicely exploits the interpretability of GAMs, the authors show that
the ranking performance achieved is signi�cantly worse than those
provided by state-of-the-art black-box models. However, it is worth
noticing that in other contexts, such as in regression and classi-
�cation tasks, other intrinsically interpretable models appear to
be as accurate as other black-box models. A notable example of
an interpretable and e�ective solution is Explainable Boosting Ma-
chine (EBM), a C++ implementation of the ⌧�2" algorithm [9],
where each component of the Generalized Additive Models (GAM)
are learned through a mixed bagging-boosting procedure [8].

In this paper, we contribute to the development of intrinsically-
interpretable ranking models with ILMART, a novel LtR solution
based on LambdaMART. ILMART creates e�ective and intelligible
models by encompassing a limited and controlled number of pair-
wise feature interactions. We evaluate ILMART on three publicly-
available LtR datasets. The results of our reproducible experiments
show that ILMART outperforms the current state-of-the-art solu-
tion for interpretable ranking of a large margin, with a gain in terms
of nDCG of up to 8% with respect to Neural RankGAM.

2 INTERPRETABLE LAMBDAMART
ILMART produces ensemble-based rankingmodels having the struc-
ture of a GAM, which is considered an interpretable model [8].
Before introducing ILMART, we review the main aspects of GAMs
to highlight similarities and di�erences with respect to the newly
proposed technique.

Generalized Additive Models. Let x 2 R3 be an instance in
a 3-dimensional vector space, with G 9 being the value of its 9-th
feature. An instance x is associated with a target label ~ generated
by some unknown target function 6(·), i.e., 6(x) = ~. In its basic
form, a GAM models the target variable ~ as a combination of ?
main e�ects and  non-zero interaction e�ects, as de�ned in [6]:

; (` (x)) = U +
?’
9=1

B 9 (G 9 ) +
9=?,:=?’
9=1,:=1

B 9: (G 9 , G: )

Where ` (x) = ⇢ [~ |x], with ~ following a distribution of the ex-
ponential family, and ; (·) being the so-called link function that is
able to describe the relationship between the ? main e�ects and
the  interactions e�ects with the expected value of ~. In addi-
tion, the number of non-zero interaction e�ects is equal to  , i.e.
|{B 9: (·) |B 9: (·) < 0}| =  . Usually, the ? main e�ects and the and
the  interactions are modeled through simple third order splines.
From the explainability point of view, the analyst is promptly pro-
vided with a plot of each basis function B 9 that clearly describes the
relation between each feature and the target variable ~, while B 9:
values represent the contribution of the interactions between fea-
ture pairs. For classi�cation and regression tasks, (shallow) decision
trees instead of splines were investigated in [9].

Interpretable LambdaMART. We now introduce ILMART, our
novel method based on LambdaMART to learn ranking models that
are both accurate and interpretable. ILMART presents similarities
with GAM, and builds the prediction ~̂ of a unknown target variable
~ as follows:

~̂ =

|J |=? main e�ectsz       }|       {’
9 2J

g 9 (G 9 )

|       {z       }
' trees

+

|K |= interaction e�ectsz                }|                {’
(8, 9)2K

g8 9 (G8 , G 9 )

|                {z                }
) trees

(1)

where g 9 (G 9 ) and g8 9 (G8 , G 9 ) are ensembles of trees. Each tree C 2
g 9 (G 9 ) models a main e�ect in which the only feature allowed for
each split is G 9 .

On the other hand, each tree C 2 g8 9 (G8 , G 9 ) models the interac-
tion e�ects, where the only features allowed in a split of tree C are
either G8 or G 9 . Similarly to the notation used to describe a GAM, ?
denotes the number of distinct main e�ects G8 , whereas  denotes
the number of distinct interaction e�ects (G8 , G 9 ).

To learn the ensemble of trees modeled by Eq. (1), we adopt a
modi�ed version of the LambdaMART boosting algorithm. Unlike
GAM, we do not make any assumption on the distribution of ~ to
guide the learning process. The learning strategy to generate the
main e�ects C 2 g 9 (G 9 ) and the interaction e�ects C 2 g8 9 (G8 , G 9 ) in
Equation 1 is made of three steps depicted in Fig. 1: i) Main E�ects
Learning, which learns a set of trees, each one working on a main
e�ect (single feature); ii) Interaction E�ects Selection, which selects
the top- most important interactions e�ects (feature pairs); iii)
Interaction E�ects Learning, which learns a set of trees, each one
exploiting one of the interaction e�ects selected by the previous
step.
Main E�ects Learning. In the initial step, illustrated on top of Fig. 1,
we learn an ensemble of ' trees modeling the main e�ects. To this
end, we constrain the LambdaMART boosting procedure to use a
single feature per tree in the �rst ' boosting rounds. In other words,
at a given boosting round of LambdaMART, when feature G 9 is
chosen for the root’s split of a tree C , we force the algorithm to use
G 9 for all the further splits in C , until a stopping criterion for tree
growth is reached. LambdaMART stops its boosting rounds when
no improvements are observed on the validation set. Eventually,
we obtain an ensemble of ' trees only using for their splits a set
J of ? features, ?  3 and ?  ', modeling the main e�ects of
Equation 1. Thus, ? is not an input parameter of ILMART, but it
is the number of distinct features used by the ensemble of ' trees
modeling the main e�ects only. We name this initial model ILMART.
It is worth noting that, as a side e�ect of this �rst step, we achieve
the additional e�ect of potentially reducing the cardinality of the
features, from 3 to ? .
Interaction E�ects Selection. In the second step, we still exploit the
LambdaMART boosting procedure to select the top- interaction
e�ects, as illustrated in the middle of Fig. 1. Speci�cally, we continue
the learning of the ILMART model obtained so far, by enabling the
interactions between all possible pairs of ? features identi�ed by
the previous step, according to the interaction heredity principle [4].
This is accomplished by constraining LambdaMART to �t trees with
only 3 leaves (and 2 splits), where the 2 splits use a pair of distinct
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i) Main Effects Learning

iii) Interaction Effects Learning

ii) Interaction Effects Selection

Main Effects

...

Interaction Effects

Interaction Selection

Figure 1: ILMART learning process. Each color corresponds to a di�erent feature used in the splits, and nodes colored in black
are leaves. The trees for the main and interaction e�ects are represented with the same depth for illustration purposes only.

features. The boosting round is stopped when the size of the set K ,
composed of the distinct feature pairs used by the ensemble of (
trees, is exactly  , where  

�?
2
�
. The ( trees are generated solely

for the purpose of identifying the interaction e�ects and they are
discarded afterwards.

Note that for selecting the main  interaction e�ects, we rely
on the capability of LambdaMART in identifying, at each boosting
round, the features and the splits with the highest contributions in
minimizing the loss function.

Thus, the interaction e�ects selected by the boosting procedure
are likely be generated in order of importance.
Interaction e�ects learning. Finally, the last step sketched on the
bottom of Fig. 1 consists in adding to the initial ILMART model )
new trees learned by constraining LambdaMART to use only the
top- feature pairs identi�ed in the previous step. The number )
of new learned trees is not an input of algorithm, but it is chosen
on the basis of the validation set. The �nal model, obtained by
adding to ILMART the) trees working on the  interaction e�ects
is named ILMART8 .

3 EXPERIMENTAL EVALUATION
Weexperimentally assess the performance of ILMART and ILMART8
on three public datasets for LtR, namely I�������S,W��30K, and
Y����. The I�������S dataset [11] includes 33,018 queries with an
average of 103 documents per query. Each document-query pair
is represented by 220 features. The W��30K dataset [14] is com-
posed of more than 30,000 queries (in 5 folds), with an average of
120 documents per query and 136 features per query-document
pair. The Y���� dataset [3] is composed of two sets, including
document-query pairs with 699 features. The feature vectors of the
three datasets are labeled with relevance judgments ranging from
0 (irrelevant) to 4 (perfectly relevant). In our experiments, we use
train/validation and test splits from fold 1 of theW��30K dataset
and data from “set 1” of the Y���� dataset.
Competitors.We compare the performance of ILMART and ILMART8
with the following competitors:

• Neural RankGAM (NRGAM), a neural-based approach to learn
GAMs for ranking. The approach exploits standalone neural
networks to instantiate sub-models for each individual feature. It
is the current state-of-the-art technique for learning interpretable
models for ranking [20].

• EBM, an e�cient implementation of⌧�2" using amixed bagging-
boosting procedure [9]. In this case the learned model is used as
a pointwise ranker, since the implementations available are only
made to solve regression and classi�cation tasks. We denote with
EBM8 the EBM model using interaction e�ects.

Metrics. We measure the performance in terms of normalized Dis-
counted Cumulative Gain (nDCG) at three di�erent cuto�s, i.e.,
{1, 5, 10}. We compute the nDCG metric by employing exponential
weighing of the relevance [1]. By default, queries with missing rel-
evant documents have been assigned a nDCG = 1.0. The statistical
signi�cance is computed with a two-sided Fisher’s randomization
test [18] with signi�cance level ? < 0.05. The test is computed
using the RankEval library [10].
Implementation and training settings. We implement ILMART
as an extension of the LightGBM library1 [7]. The extension works
by adding the possibility to constraint the boosting procedure to
use only a limited number of features per tree. The source code
used in our experiments along with the models trained on the three
public datasets is publicly available online2.

The training of ILMART and ILMART8 optimizes nDCG@10. We
perform hyper-parameter tuning by varying the number of leaves
in the trees in {32, 64, 128} and the learning rate in {0.001, 0.01, 0.1}.
Early stopping, i.e., stopping boosting if no improvement on the val-
idation set is observed for 100 consecutive rounds, is used for train-
ing in step one (main e�ects learning) and three (interaction e�ects
learning). The optimal ILMART models learned with the settings
above are made of 914, 895 and 1,969 trees for the W��30K, Y����,
and the I�������S datasets, respectively. On the same datasets, the
three optimal ILMART8 models are made of 1,365, 1,215 and 3,024
trees, respectively. Neural RankGAM is also trained by optimizing
nDCG@10. We use the public implementation of NRGAM avail-
able in Keras3 and made available by the authors of the original
paper [20]. We train NRGAM by using the same settings reported
by the authors. In addition, we employ a batch size of 128, and we
train the networks with 3,000 epochs forW��30K, 700 for Y����
and 1,000 for I�������S, with early stopping set to 100 epochs. We
also learn EBM by optimizing nDCG@10. The performance of EBM
is �ne-tuned by varying the number of outer-bags in {5, 10, 15} for

1https://github.com/microsoft/LightGBM
2https://github.com/veneres/ilmart
3https://github.com/tensor�ow/ranking/issues/202
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Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy
information retrieval systems. Given the increasing use of complex machine learning models in search systems,
explainability is essential in building and auditing responsible information retrieval models. This survey �lls a
vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and
discusses recent explainability methods developed for di�erent application domains in information retrieval,
providing a common framework and unifying perspectives. In addition, it re�ects on the common concern of
evaluating explanations and highlights open challenges and opportunities.

1 INTRODUCTION
Information retrieval (IR) systems are one of the most user-centric systems on the Web, in digital
libraries, and enterprises. Search engines can be general-purpose (e.g., Web search) to specialized
expert systems that are geared towards expert consumption or support, including legal and patent
retrieval IR [22], historical search [55, 56], and scholarly search [49, 116]. On the one hand, riding
on the recent advances of complex machine learning (ML) models trained on large amounts of
data, IR has seen impressive performance gains over classical models [73]. On the other hand,
complex models also tend to be opaque and less transparent than their classical and arguably
simpler counterparts. Therefore, towards an important goal of ensuring a reliable and trustworthy
IR systems, recent years have seen increased interest in the area of explainable information retrieval
(ExIR).

1.1 Motivation
Firstly, in IR, there has been su�cient evidence of how user interaction data from search engines
can be a source of biases, especially associated with gender and ethnicity [13, 83, 100]. When
undetected and unidenti�ed, the users of an IR system too are exposed to stereotypical biases that
reinforce known yet unfair prejudices. Secondly, model retrieval models based on transformer-style
over-parameterized models can be brittle and sensitive to small adversarial errors [132]. Recently
developed inductive biases, pre-training procedures, and transfer learning practices might lead
these statistical over-parameterized models to learn shortcuts [44]. Consequently, shortcuts that do
not align with human understanding results in learning patterns that are right for the wrong reasons.
Finally, expert users using specialized search systems – in legal search, medicine, journalism,
and patent search – need control, agency, and lineage of the search results. For all the above
IR-centric reasons, among many other general reasons – like utility for legal compliance, scienti�c
investigation, and model debugging – the �eld of ExIR provides the tools/primitives to examine
learning models and the capability to build transparent IR systems.

1.2 The Landscape of Explainable Information Retrieval
Although interpretability in IR is a fairly recent phenomenon, there has been a large amount of
growing yet unorganized work that covers many tasks and aspects of data-driven models in IR.
This survey aims to collect, organize and synthesize the progress in ExIR in the last few years. ExIR
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has quite a diverse landscape owing to the continued and sustained interest in the last few years.
The initial approaches in ExIR were adaptations of widely popular feature-attribution approaches
(e.g., LIME [102] and SHAP’s [76]). However, in the following years, there has been a multitude
of approaches that tackle speci�c problems in IR. We cover a wide range of approaches, from
post-hoc approaches (cf. Sections 3, 4 and 5), grounding to axiomatic approaches (cf. Section 6), to
interpretable-by-design methods (cf. Section 8 and Section 9).

1.3 Methodology and Scope
Before we started our literature review, we needed to collect a corpus of relevant papers for ExIR
and delineate the boundaries of the review.

1.3.1 Corpus Creation. We started with very �rst works in ExIR (e.g., [29, 112, 113]), to build up an
initial pool of papers. We did then forward search from this initial set of papers that mention terms
“(explain* OR interpretab* OR explanation* OR transparen*)” AND “(retriev* OR rank*”. Secondly, we
limited our search to articles published in the past �ve years (2018 – 2022) to provide a representative
window into current best practices that have emerged since the inception of the earliest works in
ExIR in the following IR venues – ACM Special Interest Group on Information Retrieval (SIGIR),
International Conference on the Theory of Information Retrieval (ICTIR), International Conference
on Web Search and Data Mining (WSDM), Conference on Information and Knowledge Management
(CIKM), the ACM Web Conference (TheWebConf). In total, after �ltering, we ended up with 68
papers that we consider in this review that are partially relevant. A subset of 32 papers of those
partially relevant papers �nd more detailed treatment in this survey.

1.3.2 Scope. We note that many of the methods in ExIR have methodological overlap with those
invented in ML, natural language processing (NLP), and recommender systems (RS) communities. In
fact, most of the approaches in ExIR are based on seminal papers in these communities.We only focus
on core-IR issues in this survey and, wherever possible, clearly spell out the distinctions from similar
approaches in NLP, RS and ML in general. Rationale-based models have been heavily investigated
in NLP. We cover only the methods popularized in IR-centric or venues. Our survey focuses on
rationale-based models, i.e., document-ranking tasks, in learning-to-rank (LTR), and tasks that rely
on a retrieval component. Also, RS have a lot of work and even surveys in explainability [145].
We only survey those approaches that are useful for query modeling in query-based systems. The
papers on the topics of personalization search or explainable RS, although they can be considered as
user modeling applications of ExIR, were not selected due to either lack of speci�c interpretability
methods or being more suitable to be classi�ed into a relatively independent �eld of study. We also
exclude IR approaches dealing with image or multi-modal data.

Pre-print



35

Interpretability Landscape
https://arxiv.org/abs/2211.02405Explainable Information Retrieval: A Survey

AVISHEK ANAND and LIJUN LYU, Delft University of Technology, The Netherlands
MAXIMILIAN IDAHL, YUMENGWANG, JONASWALLAT, and ZIJIAN ZHANG, L3S Research
Center, Leibniz University Hannover, Germany

Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy
information retrieval systems. Given the increasing use of complex machine learning models in search systems,
explainability is essential in building and auditing responsible information retrieval models. This survey �lls a
vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and
discusses recent explainability methods developed for di�erent application domains in information retrieval,
providing a common framework and unifying perspectives. In addition, it re�ects on the common concern of
evaluating explanations and highlights open challenges and opportunities.

1 INTRODUCTION
Information retrieval (IR) systems are one of the most user-centric systems on the Web, in digital
libraries, and enterprises. Search engines can be general-purpose (e.g., Web search) to specialized
expert systems that are geared towards expert consumption or support, including legal and patent
retrieval IR [22], historical search [55, 56], and scholarly search [49, 116]. On the one hand, riding
on the recent advances of complex machine learning (ML) models trained on large amounts of
data, IR has seen impressive performance gains over classical models [73]. On the other hand,
complex models also tend to be opaque and less transparent than their classical and arguably
simpler counterparts. Therefore, towards an important goal of ensuring a reliable and trustworthy
IR systems, recent years have seen increased interest in the area of explainable information retrieval
(ExIR).

1.1 Motivation
Firstly, in IR, there has been su�cient evidence of how user interaction data from search engines
can be a source of biases, especially associated with gender and ethnicity [13, 83, 100]. When
undetected and unidenti�ed, the users of an IR system too are exposed to stereotypical biases that
reinforce known yet unfair prejudices. Secondly, model retrieval models based on transformer-style
over-parameterized models can be brittle and sensitive to small adversarial errors [132]. Recently
developed inductive biases, pre-training procedures, and transfer learning practices might lead
these statistical over-parameterized models to learn shortcuts [44]. Consequently, shortcuts that do
not align with human understanding results in learning patterns that are right for the wrong reasons.
Finally, expert users using specialized search systems – in legal search, medicine, journalism,
and patent search – need control, agency, and lineage of the search results. For all the above
IR-centric reasons, among many other general reasons – like utility for legal compliance, scienti�c
investigation, and model debugging – the �eld of ExIR provides the tools/primitives to examine
learning models and the capability to build transparent IR systems.

1.2 The Landscape of Explainable Information Retrieval
Although interpretability in IR is a fairly recent phenomenon, there has been a large amount of
growing yet unorganized work that covers many tasks and aspects of data-driven models in IR.
This survey aims to collect, organize and synthesize the progress in ExIR in the last few years. ExIR

Authors’ addresses: Avishek Anand, avishek.anand@tudelft.nl; Lijun Lyu, L.Lyu@tudelft.nl, Delft University of Technology,
P.O. Box 1212, Delft, The Netherlands; Maximilian Idahl, idahl@l3s.de; Yumeng Wang, wang@l3s.de; Jonas Wallat, wallat@
l3s.de; Zijian Zhang, zzhang@l3s.de, L3S Research Center, Leibniz University Hannover, Appelstr. 9a, Hannover, Lower
Saxony, Germany.

2 Avishek Anand, Lijun Lyu, Maximilian Idahl, Yumeng Wang, Jonas Wallat, and Zijian Zhang

Explainable IR

Post-hoc

Feature
Attribution §3

Free-text
Explanations §4

Adversarial
Examples §5

Grounding to IR Properties

Axiomatic
Analysis §6

Probing §7

Interpretable by-design

Explainable
Architectures §8

Rationale-based
Methods §9

Fig. 1. Categorization of explainable IR approaches, where § indicates the section the approach is discussed.
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(e.g., LIME [102] and SHAP’s [76]). However, in the following years, there has been a multitude
of approaches that tackle speci�c problems in IR. We cover a wide range of approaches, from
post-hoc approaches (cf. Sections 3, 4 and 5), grounding to axiomatic approaches (cf. Section 6), to
interpretable-by-design methods (cf. Section 8 and Section 9).

1.3 Methodology and Scope
Before we started our literature review, we needed to collect a corpus of relevant papers for ExIR
and delineate the boundaries of the review.

1.3.1 Corpus Creation. We started with very �rst works in ExIR (e.g., [29, 112, 113]), to build up an
initial pool of papers. We did then forward search from this initial set of papers that mention terms
“(explain* OR interpretab* OR explanation* OR transparen*)” AND “(retriev* OR rank*”. Secondly, we
limited our search to articles published in the past �ve years (2018 – 2022) to provide a representative
window into current best practices that have emerged since the inception of the earliest works in
ExIR in the following IR venues – ACM Special Interest Group on Information Retrieval (SIGIR),
International Conference on the Theory of Information Retrieval (ICTIR), International Conference
on Web Search and Data Mining (WSDM), Conference on Information and Knowledge Management
(CIKM), the ACM Web Conference (TheWebConf). In total, after �ltering, we ended up with 68
papers that we consider in this review that are partially relevant. A subset of 32 papers of those
partially relevant papers �nd more detailed treatment in this survey.

1.3.2 Scope. We note that many of the methods in ExIR have methodological overlap with those
invented in ML, natural language processing (NLP), and recommender systems (RS) communities. In
fact, most of the approaches in ExIR are based on seminal papers in these communities.We only focus
on core-IR issues in this survey and, wherever possible, clearly spell out the distinctions from similar
approaches in NLP, RS and ML in general. Rationale-based models have been heavily investigated
in NLP. We cover only the methods popularized in IR-centric or venues. Our survey focuses on
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Probing Philosophy

If we can train a classifier to predict a property of the input text based on its representation, it 
means the property is encoded somewhere in the representation

LAMA (LAnguage Model 
Analysis) probe

(Petroni et al., 2019)

[petroni et al. 2019]
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of the principled, axiomatic notions of relevance. This has the bene�ts of faster convergence [104],
improved performance [26] or generalization ability [24, 104], and improved interpretability [24].
The method by which the ranking models are regularized varies from adding a regularization term
to the loss function [24, 104] to axiomatically perturbing the training data to amplify desirable
properties [26]. An example of such a regularization term is applied by Chen et al. [24] who add a
relevance loss to their �nal loss function that checks how well the model’s relevance judgments
coincides with the axioms’. Cheng and Fang [26] extend the training dataset by randomly sam-
pling instances and perturbing them according to three document length normalization axioms,
such as by adding noise terms. Then, these more noisy documents are assigned a lower relevancy
value. From such perturbed data examples, the model is expected to understand the corresponding
normalization axiom based on document length. While current regularization methods o�er only
limited (perceived) interpretability, the approach similar to the neuro-symbolic approaches [108]
marry the bene�ts of both axioms and data-driven models.

6.4 Evaluation
IR axioms have been applied in various works over the past decades, and many revolve around
interpretability. However, little formal evaluation of the insights gained through the axioms has
been done from an interpretability perspective. One exception is Chen et al. [24], who give anecdotal
examples of their axiomatically regularized model’s input attribution being more sparse and focused
on relevant tokens. In addition, only Völske et al. [128] use established interpretability evaluation
metrics and measure the �delity of their generated (post-hoc) explanations. From the interpretability
perspective, two steps are needed for upcoming work: 1), proposing new axioms or methods to
better explain neural ranking models and 2), rigorously evaluating the produced explanations with
established metrics and eventually human acceptance studies.

7 PROBING AND PARAMETRIC ANALYSIS OF TEXT RANKING MODELS
Probing is a method to analyze the content of latent embeddings. It allows us to understand the
information encoded in the model’s representations. Usually, probing includes training a small
classi�er to predict the property of interest (e.g., part-of-speech tags or question types) directly
from the embeddings [9, 121, 122, 127].

7.1 The Probing Methodology
Figure 8 shows an example in which we test whether a ranking model encodes information on
di�erent question types.

What attracts tourists to Rome? Location

Embeddings

Frozen
Ranker

Probe
Model

Fig. 8. Example of the probing paradigm. A small classifier (the probe model) is used to predict properties (in
this case the question type) from a ranker’s frozen representations.

To do so, we need a small, labeled dataset of questions and their respective question types.
We then train the probing classi�er to recover the question type information from the ranker’s
frozen embeddings. Originally, the model would be considered to encode the property of interest
if the classi�er can better predict it than a majority classi�er. However, depending on the task’s
di�culty, dataset size, and classi�er complexity, large portions of the resulting performance must
be attributed to the classi�er. Therefore, a large set of improvements to the probing paradigm have
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Fig. 1. Procedural overview: In the first set of experiments, we probe for different
abilities of neural ranking models (e.g., BM25, semantic similarity). We then utilize
the information where the model best captures these properties to give additional
training signals to that specific layer during multi-task learning.

performance of a probe measures the quality of the contextual representations.
Consequently, various task-specific probing tasks have been developed to inves-
tigate contextual embeddings for linguistic and factual knowledge [6, 36, 48, 55].

This paper focuses on large contextual models that have been applied with
major success in information retrieval tasks. However, there is limited work on
probing for IR and, particularly, to text ranking tasks. Until now, most studies
focused on probing for linguistic [23, 48] or factual knowledge [35, 36] of pre-
trained models, e.g., finding that BERT’s layers and their abilities coincide with
the classical NLP pipeline [47] or that dependency parse trees can be decoded
from BERT’s embeddings [23]. There has also been work on investigating the
evolution of higher-level factual and linguistic knowledge through the layers of
large contextual models [47, 52]. Most of the existing work in explaining the
behavior of contextual ranking models is through IR axioms [7, 41, 51]. Although
axioms are well-established, formal descriptions of what makes a good text ranker,
they have limited modeling of semantic similarity and have been shown to have
limited applicability to explain neural rankers [7, 51].

1.1 Research Questions

We aim to fill the gap of characterizing the performance of neural rankers in
terms of IR abilities by proposing probing methods. Through probing, we try to
understand the behavior of ranking models by grounding it on well-understood
IR properties and best practices for text ranking – matching, semantic similarity,
in conjugation with essential linguistic properties of named entity recognition,
and coreference resolution. We answer the following research questions:

RQ 1. What abilities do neural rankers acquire to perform the ranking task?

RQ 2. Can we apply the knowledge to build better ranking models?

If the document representation can do well on a IR ability then it understands or exhibits that 
ability well… 

[Wallat et al ECIR ’23]  
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4.2 Models

We conduct our probing experiments on BERT [14], using three different base
models throughout our experiments:

1. bert-base-uncased - the publicly available5 pre-trained BERT model
consisting of 12-layer, 768 dimensions, 12-heads, 110M parameters. The
length of the input is restricted to 512 tokens.

2. bert-msm-passage - bert-base model, fine-tuned on MS MARCO for
the TREC-DL 2019 passage level ranking task [12]

3. bert-msm-doc - the bert-base model, fine-tuned on MS MARCO for the
TREC-DL 2019 document level ranking task.

The ranking models were trained with a similar setup as Nogueira et al. [33] for
up to 20 epochs on using the binary cross-entropy objective.

4.3 Training Probe Models

For all tasks, we train a 2-layer MLP probe model with self-attention pooling
(similar to [48]) for up to a maximum of 50 epochs and perform early stopping
after 10 epochs if no improvement in validation loss has been measured. As
an optimization algorithm, we use Adam [28] with a batch size of 32 and clip
gradients with an L2-norm greater than 5. We start with a learning rate of 1e-4
and half it at the end of an epoch if the validation loss does not improve.

5 Results

To establish which ranking ability is learned by fine-tuning on ranking datasets
(RQ 1), we compare the performance of a fine-tuned passage ranking (bert-

msm-passage) and a document ranking model (bert-msm-doc) to two base-
lines: 1) a pretrained model without fine-tuning, and 2) model with random
weight initialization. For a pre-trained model, we use a BERT model (bert-

base-uncased). Furthermore, we use BERT input embeddings with random
weight initialization as a source of random embeddings [54].

Fig. 2. Probing results over the layers for the BM25 task.

5 https://huggingface.co/bert-base-uncased

[Wallat et al ECIR ’23]  
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