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How It started

® Axiomatic Framework: Understanding Information Retrieval
(Fang et al. SIGIR 2004)

® Given query (), when would you prefer D, over Dj?

® Formalised necessary (good) heuristics for retrieval
effectiveness

® Relevance was defined as a set of formally defined
constraints (axiom)

® Well known constraints to govern term-weighting schemes



Popular term weighting schemes

® Pivoted Normalisation (Vector Space Model)

1 +log(1 + log(c(w, d))) N+1
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® BM25
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Research questions

® M, and M, —Although derived differently, why do these
two models perform similarly?

® They share some common properties
® Why are they better than some other variants?

® Other variants don’t have “good” properties



Axiom structure (TFC1)

® Favour a document (higher score) with more occurrences
of a query term

Let O = {w} be a single term query, d; and d, be two documents having equal length.

If count(q,d,) > count(q,d,) then Score(q,d,) > Score(q, d,)
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Axiomatic Analysis and Optimisation of Information Retrieval Models, Fang and Zhai, SIGIR Tutorial 14. )



Popular Axioms

TFC1 To favor a document with more occurrences of a query term

TFC2 To ensure that the amount of increase in score due to adding
a query term repeatedly must decrease as more terms are
added

TFC3 To favor a document matching more distinct query terms

TDC To penalize the words popular in the collection and assign
higher weights to discriminative terms

LNC1 To penalize a long document (assuming equal TF)

LNC2, To avoid over-penalizing a long document

TF-LNC

TF-LNC To regulate the interaction of TF and document length

Axiomatic Analysis and Optimisation of Information Retrieval Models, Fang and Zhai, SIGIR Tutorial 14. 6



Analysis

® Okapi aka BM25 performs poorly for verbose queries (Violates
Constraints)

® Modify formulae to satisfy constraints =Performs better!

® Relatively stable performance of BM25 compared to Pivoted
Length Normalisation w.r.t parameter variation

® Empirical performance is related to how well they satisfy
constraints



Axiomatic Result Reranking

® Turn any retrieval model to Axiom Compliant one [Hagen et al.
CIKM 2016]

® Step 1: Start with any top-k ranking
® Step 2: Axiom aggregation:

® For each axiom A; compute preference/ordering of D; and Dy

1, it D;> Dy

0, otherwise

O, MAi[ja k] — {



Axiomatic Result Re-Ranking

® Step 2: Axiom aggregation:
® Set of 23 axioms
® Relaxed version of some axioms
@ Extension (one query term to multiple query terms)
@ Relaxation (approximately fulfil the relationship)
® Combined with learned aggregation function (retrieval-specific)

® Classification Problem (Random Forest)
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Axiomatic Result Re-Ranking, Hagen et al., CIKM 16.
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Axiomatic Result Re-Ranking

® Step 3: Combining preferences
® Could contain conflict D; > D;, D,>D,;, D;>D;
® Translates to rank-aggregation problem

® Objective: minimize distance function to the original m rankings (NP-
Complete)

® Apply KwikSort (Ailon et al. JACM 2008) on resulting matrix

® Observation: output is axiom compliant and effectiveness is better!
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Similar analogy

(zv < —3.5) (y < 4)

(a) Optimal 5-means clusters (b) Tree based H-means clusters (¢) Threshold tree

Explainable k-Means and k-Medians Clustering, Dasgupta et al., ICML 20.
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Axiomatic Explanations of Neural Models

® RQ(s): To what extent can we explain neural models with
Axiomatic Framework? (Volske et al. ICTIR 2021)

® Post-hoc explanations of IR models
® 20 axioms were considered
® Simple classification model (Random Forest) to make

pairwise decision
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Intuitive diagram

® Objective is to classify the preferences: based on 20
dimensional feature vector
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Towards Axiomatic Explanations for Neural Ranking Models, Volske et al., ICTIR 21.
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Observations

® Large difference in retrieval score can be well explained

@ Pairs with more similar retrieval scores are difficult to explain
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Diagnosing Neural IR Models

® Diagnostic Dataset (Renning et al. ECIR 2019)
® RQ: To what extent do neural IR models fulfil the axioms?
® Relaxed and Extended version of TFC1, TFC2, TDC, LNC2

® Diagnosed models : BM25, LMDIR, DRMM, aNMM, Duet,
MatchPyramid
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Diagnostic Datasets

® Originally inspired from NLP, Computer Vision domain

® For NLP fine grained linguistic Tasks: anaphora resolution,
entailment,...

® Answer-Passage retrieval dataset WikiPassageQA
® Sample <query, document pairs> triplets

@ If it satisfies axioms put It in the diagnostic set
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Pipeline and objective

What is Granite? what is granit including appended documents
.. filtering & create & add Extended
Original preprocessing™ > Preprocessed artificial data Dataset
Dataset Dataset (including artificial
data
— A ~—— _ — )
OR — —
. ion & - check condition : :
Axiom extension& o Axiom . —» Diagnostic
relaxation fulfillment Dataset
- e
q={w.w) q={wi,wa...,wq) Q1317, D283-0, D283-14, D283-16

Objective : Given a tuned model how well they can predict the axiomatic preferences?

An Axiomatic Approach to Diagnosing Neural IR Models, Rennings et al., ECIR 19.
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Dataset statistics

TFC1 TFC2| M-TDC| LNC27est LNC24%
Parameters k={2,3,4}, doclenmar = 240
Train 2,758,223 837.838| 33,509 0 82,785
Dev 376,902 50,772| 3,958 0 10,485
Test 353,621 183,898 4,497 10,074 10,074
Total 3,488,746 1,072,508| 41,964 10,074 103,344

An Axiomatic Approach to Diagnosing Neural IR Models, Rennings et al., ECIR 19.
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Observation

TFC1 TFC2 TDC LNC2(T) LNC2(A)

BM25 0,73 0,98 1,00 0,80 0,80

LMDIR

Duet 0,25 0,29 0,10 0,69 0,56 0,48 0,19 0,47

MatchP

: 0,44 0,51 0,18 0,79 0,58 0,63 0,00 0,19
yramid

DRMM 0,64 0,20 0,84 0,60 0,76 0,05 0,12

aNMM 0,66 0,21 0,85 0,56 0,69 0,38 0,47
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® Fulfilment of axioms is not a good indicator for NRIM
® NRMs did (not) learn some patterns

® Could fix Duet model with additional triplets
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Diagnosing Distill BERT Model

® RQ: Why BERT based model is so powerful?

® Diagnosing dataset from TREC 2019 Deep Learning track

® Using 9 axioms (TFC1, TFC2, TDC, LNC1, LNC2, STMCI,
STMC2, STMC3, TP)
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® Retrieve top-k (100) with LMDIR

@ Add pair of documents D;, D, if they satisty constraints

® For LNC2 create duplicate documents for test set only

® Recall that LNC2 says we should avoid over-penalizing
long relevant documents.
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® Retrieval effectiveness wise DistilBERT > QL

@ Axioms are "not applicable” or “not sufficient”

nDCG [MRR |TFC1|TFC2/M-TDC|LNC1 LNC2 TP | STMC1 STMC2|STMC3
QL 0.2627 [0.3633 10.99/0.70 0.88 0.50/1.000.39 |0.49 0.70 0.70
DistilBERT 0.3633 0.4537/0.61 [0.39 [0.51 ]0.50/0.00 |0.41/0.50 |0.51 |0.51

Diagnosing BERT with Retrieval Heuristics, Camara and Hauff, ECIR 20.
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Further Investigation(s)

® Divide Q, Dy pair into three buckets

® Query/Document pair has few, moderate and large overlap
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Diagnosing BERT with Retrieval Heuristics, Camara and Hauff, ECIR 20.
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Question(s)

® Axioms are not complete yet!

® BERT models fail to adhere to many constraints still perform

really well...

® We need more (better) axioms to explain them
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